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A B S T R A C T

Physical properties of biochar such as small particle size and high porosity can modify soil properties and help to
improve soil water dynamics. However, there has been no consistent long-term measurements of change in soil
physical properties due to biochar application under real field conditions. In this study, we use a unique dataset
of soil water content measurements in a corn-soybean cropping system (with biochar and no-biochar) for two
years. Soil water content was measured every 30min at 4 different depths and with 3 replications in corn plots.
The effect of biochar was expected to be the difference between the physical soil properties of the two treat-
ments. The APSIM model, a process-oriented crop model, was employed in order to find the physical properties
of biochar and no-biochar treatments by using inverse modeling. First, a global sensitivity analysis was carried
out to find the most sensitive inputs for the APSIM model for soil water simulation. Then the Metropolis-Hasting
algorithm was used to inversely estimate the APSIM soil input properties using the soil moisture measurements.
Results of the sensitivity analysis showed that the drainage upper limit (DUL) was the most sensitive soil
property followed by saturated hydraulic conductivity (KS), saturated water content (SAT), maximum rate of
plant water uptake (KL), maximum depth of surface storage (MAXPOND), lower limit volumetric water content
(LL15) and lower limit for plant water uptake (LL). The difference between the posterior distributions (with and
without biochar) showed an increase in DUL by approximately 10%. No considerable change was noted in LL15,
MAXPOND and KS whereas SAT and LL showed a slight increase and decrease in biochar treatment respectively
compared to no-biochar.

1. Introduction

Biochar has recently gained considerable attention due to its agro-
nomic benefits and carbon sequestration potential. Among its many
properties, biochar high surface area (Laird et al., 2010), small particle
size (Hardie et al., 2014; Basso et al., 2013), low bulk density (Downie
et al., 2009; Devereux et al., 2012) and high organic carbon content
(Herath et al., 2013; Jones et al., 2010) which can effectively decrease
soil bulk density, increase porosity and help coarse texture soils by
increasing their capacity for holding water (Basso et al., 2013). How-
ever, despite the increased attention there is not yet a consensus on the
effects of biochar on soil hydraulic properties (Hardie et al., 2014).

Short-term changes in physical and hydrological properties of
amended soils with biochar have been observed in numerous lab and
incubation studies (Streubel et al., 2011; Liu et al., 2012). However,
laboratory-scale measurements of soil physical properties are mainly
based on static steady flow assumption (Vrugt and Dane, 2006) and
may produce large errors (Abbaspour et al., 1999). In addition,

Mallants et al., (1997) and Reynolds et al., (2000) found that different
lab techniques may result in different estimates for soil physical prop-
erties. Sensitivity to the geometry of the flow, sample size and sample
collection procedure are among the reasons why dissimilar measure-
ment of soil physical properties are observed (Reynolds et al., 2000).
Although these studies allow for convenient implementation and mea-
surements, they lack the dynamic interactions of soil properties with
crop and management practices. For example, increase in porosity and
water holding capacity of amended soils with biochar can potentially
promote root penetration, aeration and lead to higher water and nu-
trient acquisition. However, increase in crop water and nutrient uptake
cannot be fully investigated in lab studies and requires a dynamic
method that is capable of directly and indirectly capturing the inter-
action among soil, biochar and crop.

One approach for indirectly estimating field-relevant soil physical
properties of amended soils with biochar is use of inverse modeling.
Inverse modeling searches the input parameters space of a model for the
most plausible combination of inputs that yield the best fit between
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model predictions and observations. Numerous studies have been
conducted that use inverse methods with the aim of estimating soil
physical properties, model verification or uncertainty analysis (e.g.
Mertens et al., 2006; Abbaspour et al., 1999). For example, Wöhling
et al., (2008), suggested that inverse modeling of process-oriented crop
models like APSIM (Agricultural Production Systems Simulator) is a
promising technique for obtaining “effective” hydraulic properties of
soils. Application of this technique for estimation of hydrological
parameters accounts for more dynamic interactions of soil properties
compared to lab measurements.

This study used the APSIM model (Holzworth et al., 2014) along
with a unique dataset of continuous soil water content measurements in
two cropping systems (biochar vs. no-biochar treatment) for two years.
We propose an optimization framework to inversely estimate hydraulic
parameters for the APSIM model. This optimization framework uses
measurements of soil moisture for two years as input data. We hy-
pothesize that the analysis of this dataset with a process-oriented crop
model will allow us to derive reasonable estimates of the effect of
biochar on soil hydrological properties. Therefore, the main objective of
this study is to derive posterior distributions for soil physical para-
meters using the APSIM model for biochar and no-biochar treatments.
We expect that the difference between estimated posterior distributions
(i.e. with and without biochar) will indicate the effect of biochar on soil
physical properties in the field.

2. Materials and methods

2.1. Field experiment and measurements

The research site is located at the Armstrong Memorial Research
and Demonstration Farm near Lewis, IA (41° 18′ N, 95° 10′ W). In 2011
biochar was applied at a rate of 10Mg ha−1 in 3 out of 6 plots and
paired plots were left as controls. Maize was planted on May 17 in 2013
and on May 8 in 2014; it was harvested on Oct 28 in both years. Soil
water content, soil temperature, and EC were measured at 30min in-
tervals at 4 depths (10 cm, 25 cm, 42 cm and 60 cm) for both years in all
plots. We used Decagon 5TE soil moisture sensors which have an esti-
mated accuracy of about± 0.03 m3m-3 after calibration. Sensors were

installed May 2012 and they were in place until the end of the ex-
periment. Calibration was performed using Topp’s equation (Topp
et al., 1980) according to the sensor’s manual, which converts the bulk
dielectric constants to bulk volumetric soil water content. Soil moisture
measured in the time interval from Nov 20th in 2013 until the end of
May in 2014 was not included in this study because the soil was frozen
and the sensors were not working properly.

During early 2014 there were more extreme cold days compared to
2013, and the total precipitation was 882mm for the first year and
1123mm for the second year. The experimental site received an
average of 15.8MJm−2 solar radiation per day and 5778MJm−2 in
total over the course of 2013 and 15.6MJm−2 per day and
5694MJm−2 in total in 2014. The highest temperature recorded in
2013 was 36 °C whereas −26 °C was the lowest temperature. Likewise,
maximum temperature in 2014 was 34 °C and the minimum was
−25 °C.

2.2. APSIM model

The APSIM model has been designed in a modular fashion, allowing
users to perform their own simulations using numerous soil, crop, cli-
mate and management components (McCown et al., 1996). The APSIM
model can simulate soil water content, soil temperature and nutrient
cycling as well as their interaction with different crop and management
practices (e.g. irrigation, fertilization) on a daily time step (Keating
et al., 2003). Specifically, for the U.S Midwest, APSIM has been used as
a way to examine the indirect effect of new management practices on
different soil and crop properties (e.g. Basche et al., 2016; Archontoulis
et al., 2014). The SOILWAT module in APSIM (Probert et al., 1998)
estimates daily changes in soil water content for different soil layers due
to infiltration of irrigation and rainfall, vertical drainage, unsaturated
and saturated flow, soil evaporation, and root water uptake processes.
The model uses a "tipping bucket" approach for computing soil water
drainage (Ritchie, 1972). In this method, the excess water above the
field capacity of a layer is passed directly to the layer below. Upward
unsaturated flow is also computed using a conservative estimate of the
soil water diffusivity and differences in volumetric soil water content of
adjacent layers.

Table 1
List of hydrologicalparameters with their lower and upper bound used for sensitivity analysis.

# Parameter Definition Unit Lower
bound

Upper
bound

1 CN2Bare Curve number for bare soil – 60 89
2 CNCov The extent of the effect of surface residue on CN – 1 100
3 DiffusConst Diffusivity coefficients for unsaturated flow – 1 300
4 DiffusSlope Diffusivity coefficients for unsaturated flow – 1 100
5 DUL (1) Drained upper limit volumetric water contents-Layer1 cm3 cm−3 0.12 0.39
6 LL15 (1) Lower limit volumetric water contents for-Layer1 cm3 cm−3 0.05 0.11
7 SAT (1) Saturated volumetric water contents-Layer1 cm3 cm−3 0.4 0.55
8 DUL (2) Drained upper limit volumetric water contents-Layer2 cm3 cm−3 0.12 0.39
9 LL15 (2) Lower limit volumetric water contents for-Layer2 cm3 cm−3 0.05 0.11
10 SAT (2) Saturated volumetric water contents-Layer2 cm3 cm−3 0.4 0.55
11 Salb Soil albedo – 0.1 0.7
12 Sini Initial soil moisture (based on total soil fraction) – 0.1 1
13 SummerCona Second stage evaporation coefficient – 1 50
14 SummerU Potential amount of cumulative evaporation (before soil supply becomes limiting) – 1 50
15 SWCON (1) Drainage coefficient-Layer1 – 0.01 0.99
16 SWCON (2) Drainage coefficient-Layer2 – 0.01 0.99
17 XF Exploration Factor – 0.01 0.99
18 KL Maximum rate a plant can extract water from day−1 0 0.5
19 LL crop LL cm3 cm−3 LL15 DUL
20 BD (1) Bulk density-Layer1 g cm−3 1.0 1.8
21 BD (2) Bulk density-Layer2 g cm−3 1.0 1.8
22 KS (1) Saturated hydraulic conductivity-Layer1 mday−1 0.01 10
23 KS (2) Saturated hydraulic conductivity-Layer2 mday−1 0.01 10
24 MWCON (1) Controls the water flow in soil saturation condition-Layer1 – 0.1 0.9
25 MWCON (2) Controls the water flow in soil saturation condition-Layer2 – 0.1 0.9
26 MaxPond Maximum depth of surface storage – 1 10
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