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A B S T R A C T

Underestimating the impacts of climate change on agricultural production could lead to complacency about the
potential adaptation challenges. This study used a Representative Climate Futures (RCF) approach to model
projected wheat yields under climate change in Australia. It simulated the range of impacts, resulting from a
subset of individual Global Climate Models (GCMs), on wheat production in the major wheat regions of
Australia. The study used RCFs that represented ‘most-likely’, ‘best’ and ‘worst’ cases across multiple
Representative Concentration pathways (RCPs). Median wheat yields modelled for the South West Australia
projected declines between 26% and 38%, under a ‘most-likely’ case for RCP 4.5 by 2090, and between 41% and
49%, under a ‘most-likely’ case for RCP 8.5. Median wheat yields declined under RCP 8.5 for the ‘most-likely’
case across the majority of wheat producing regions, with a range of 1% to 49%. Greater declines were projected
under the ‘worst’ cases of hottest and driest climates. However, the ‘best’ cases of least warm and wetter climates
projected an increase in median wheat yield, a range of 2% to 87%. Variability also changed from the baseline
under all projected RCFs and across all regions, with a standard deviation of up to 2.46 t/ha under the ‘most
likely’ case at a site in south-eastern Australia. These likely shifts in the size and reliability of yields, combined
with concurrent climate change impacts on other factors, mean that agriculture faces significant adaptation
challenges, particularly under some of the ‘most-likely’ scenarios and all of the ‘worst’ case scenarios. Further
work is required to explore how scenarios in one region relate to those in other regions and thus the overall
outcome at the continental scale.

1. Introduction

Australian agriculture has developed to cope with a climate that is
highly variable, spatially and temporally. This has influenced the choice
of farming systems, management practices, productivity, product
quality and costs (Howden et al., 2013). Against a backdrop of longer-
term climatic trajectories, the unpredictability of Australia's weather
patterns is projected to increase with climate change (CSIRO and
Bureau of Meteorology, 2016). While temperatures are projected to
increase with climate change, projections in rainfall vary between
global climate models (GCMs) (Flato et al., 2013). These changes are
projected to vary considerably between regions (CSIRO and Bureau of
Meteorology, 2015). Overall, it is highly likely that the agricultural
sector will need to increase its level of adaptation if it is to better
manage the major uncertainties and other challenges ahead in order to

ultimately maintain, or genuinely achieve, more efficient, profitable
and sustainable production systems (Stokes and Howden, 2010;
Whetton et al., 2012; Vermeulen et al., 2013, Prober et al., 2017).

Many climate change impact studies in agriculture have used either
a single GCM (Bassu et al., 2011; Cullen et al., 2009; Anwar et al., 2007)
or ensembles of GCMs (Asseng et al., 2013; Vermeulen et al., 2013).
These studies incorporated projected climate parameters into agri-
cultural models, which to broadly describe what Vermeulen et al.
(2013) call impact approaches. These use statistical or mechanistic
models that attach probabilities to possible outcomes under the given
range of scenarios. Multi-model ensemble simulations generally provide
more robust information than any single model (Randall et al., 2007).
However, different GCMs produce different climate projections, pre-
senting a range of plausible future climates. There is considerable dis-
agreement regarding the selection of specific models for future impact

https://doi.org/10.1016/j.agsy.2017.12.007
Received 3 May 2017; Received in revised form 14 December 2017; Accepted 16 December 2017

⁎ Corresponding author at: Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Australia.
E-mail address: ctaylor@unimelb.edu.au (C. Taylor).

Agricultural Systems 164 (2018) 1–10

0308-521X/ © 2018 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/0308521X
https://www.elsevier.com/locate/agsy
https://doi.org/10.1016/j.agsy.2017.12.007
https://doi.org/10.1016/j.agsy.2017.12.007
mailto:ctaylor@unimelb.edu.au
https://doi.org/10.1016/j.agsy.2017.12.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.agsy.2017.12.007&domain=pdf


studies, making it difficult to justify using a reduced sub-set of climate
projections (CSIRO and Bureau of Meteorology, 2015).

One approach is to use a small set of best performing GCMs based on
their ability to replicate features of the current climate, particularly for
specific regions. There are more than 40 Global Circulation Models
(GCM) used in the Coupled Model Inter-comparison Project Phase 5
(CMIP5) (CSIRO and Bureau of Meteorology, 2015). The benefits of
using a subset selection of GCMs reduces the extraneous computations
involved with modelling projected climate change using all of the GCMs
used in CMIP5. However, selection can be influenced by bias, leading to
inconsistencies across studies and confusion among policymakers
(Ruane and McDermid, 2017). Furthermore, the exclusion of GCMs
deemed of lower reliability might exclude the consideration of low
likelihood, but high impact future regional climates of real significance
to adaptation planning. To address these shortcomings, Whetton et al.
(2012) developed the Representative Climate Futures (RCF) method in
impact and adaptation assessment for the selection of GCMs to re-
present projected climate change across specified regions. This involved
classifying projected changes from the full suite of climate models into
classes and assigning relative likelihoods based on the number of cli-
mate models falling within those classes (Clarke et al., 2011).

The aim of the present study was to apply the RCF methodology to
model the range of climate change impacts across the wheat producing
regions of southern Australia, comparing these impacts and variability
on future yields between regions and RCFs. The implications of the
results for climate change adaptation are discussed.

2. Materials and methods

2.1. Sample sites

The Representative Climate Futures (RCF) approach was modelled
at 10 sites within four Natural Resource Management (NRM) regions
across southern and eastern Australia. Information on location and
agro-ecological zone is presented in Fig. 1 and Table 1. All sites mod-
elled were in the ‘Temperate Seasonally Dry Slopes and Plains’ agro-
ecological zone (Williams et al., 2002), apart from Moree, which was
defined as ‘sub-humid, subtropical slopes and plains (Williams et al.,
2002). Sites were selected on the availability of data and as re-
presentative of a region. For example, Charlton was representative of
the Murray Basin NRM and Minnipa was representative of the Southern
and SW Flatlands (East) NRM. Soil input data for each site was sourced
from previous studies by Hunt and Kirkegaard (2011) and Chenu et al.
(2011), where they provided input data for multiple sites, including
those used in this study, across wheat production areas in Australia.

2.2. Climate data

For each site, historical daily climate data were used for a 31-year
baseline period from 1980 to 2010 (SILO database, Jeffrey et al., 2001;
http://www.longpaddock.qld.gov.au/silo/). Although the IPCC AR5
used baseline climate data from 1986 to 2005 and centred on the year
1995 (20 years), this study extended this baseline from 1980 to 2010
(31 years with 1995 as the centred year), in order to better capture
variability between years for the analysis. Weather data were obtained
on a daily time step, with variables consisting of solar radiation (MJ/
m2/day), minimum and maximum temperatures (°C), rainfall (mm),
evaporation (mm) and vapour pressure (hPa) (Jeffrey et al., 2001). The
Representative Concentration Pathways (RCPs) used in this study were
sourced from the pathways described in Van Vuuren et al. (2011), being
RCP4.5 and RCP8.5. These were selected to represent the highest and
lowest (stabilization) impact scenarios.

2.3. Global climate models and the representative climate futures

A set of RCFs was used to describe plausible future climates across

the study regions (Whetton et al., 2012). The RCFs formed a typology of
selected climate variables (Clarke et al., 2011; Whetton et al., 2012).
They were based on a multi-purpose decision-support tool to assist
understanding and applying of climate change projections for impact
assessment and adaptation planning (Clarke et al., 2011). The RCFs
were derived from a web-based tool, hosted by the CSIRO Climate
Change in Australia project (www.climatechangeinaustralia.gov.au).
They were created in this study via a four step process: the first in-
volving the generation of the RCFs; the second being the examination
and application of the model results; the third being the identification
of a representative GCM for each key climate future; and the final step
involved the application of the results in the impact assessment (Fig. 2).

The individual GCM climate variables consisted of rainfall, solar
radiation, maximum and minimum temperature, which corresponded
to the inputs required for The Agricultural Production Systems
sIMulator (APSIM) model (Keating et al., 2003). The NRM regions se-
lected for analysis were the Southern and SW Flatlands West, the
Southern and SW Flatlands East, the Murray Basin and the Central
Slopes. The full suite of available GCMs was used and individual GCMs
were organised into a ‘most likely’ case, a ‘best’ case and a ‘worst’ case.
The ‘most likely’ case consisted of at least 30% or more of total number
of GCMs that were aligned around the changes in relation to the
baseline climate. The ‘best’ case was defined as the climate future re-
sulting in the highest rainfall and ‘least-hot’. The ‘worst’ case was de-
fined as the climate future resulting in the least rainfall and ‘most hot’
(Whetton et al., 2012). Each GCM was ranked against a multivariate
ordering technique according to the mean, minimum and maximum
(Kokic et al., 2002). The GCM closest to the multi-model mean of the
‘most likely’ case was selected, along with the GCMs aligning with the
minimum and maximum being selected for the 'best' and 'worst' cases,
respectively. The RCF outputs were the smoothed average of the GCM
grid cells across each NRM zone. These consisted of monthly percentage
changes for rainfall and solar radiation and increases in degrees Celsius
for maximum and minimum temperature. These delta change factors
were applied across local climate information for each site (Cullen
et al., 2009). The year 2090 was used for the analysis, because the
climate signal would be strongest under both RCPs. The year 2050 was
used as the mid-point of the analysis. Projections under respective
GCMs grouped under ‘worst’, ‘most-likely’ and ‘best’ cases for 2090
were assigned the same cases for 2050, irrespective of their respective
projections for 2050, so as to keep the GCM selection consistent
throughout the analysis.

2.4. Cropping simulations

The cropping systems model APSIM-Wheat (Keating et al., 2003)
was used to project the potential effects of the study ensemble on wheat
crop productivity at the sample sites (Luo and Kathuria, 2013). APSIM
has been validated in several studies that matched modelled yield with
observed yield (Asseng et al., 1998, 2004; Probert et al., 1995; Luo
et al., 2003). A number of studies have analysed wheat yields and
changes under projected climate change for the wheat producing re-
gions used in our study (Hochman et al., 2017), including South Aus-
tralia (Luo et al., 2005), Victoria (Anwar et al., 2007), southeast Aus-
tralia (Anwar et al., 2015) and south west Australia (Ludwig and
Asseng, 2006).

APSIM contains an array of modules (Keating et al., 2003). The key
modules deployed in this analysis were Wheat (wheat crop growth and
development), management (setting crop management procedures),
Water, Soil Organic Matter, Soil Water (soil water balance), Initial
Water (initial water balance), Initial Nitrogen, climate control and daily
time step weather data for the period of the simulation. Potential crop
water uptake was simulated via relationships with root exploration and
extraction potential (Keating et al., 2003). Where water was a limiting
factor, above-ground biomass accumulation was the product of avail-
able soil water and conversion efficiency in transpiration, which was
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