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ABSTRACT

Estimating the reproduction number of an emerging infectious disease from an epidemiological data is becoming
more essential in evaluating the current status of an outbreak. However, these studies are lacking the funda-
mental prerequisite in parameter estimation problem, namely the structural identifiability of the epidemic
model, which determines the possibility of uniquely determining the model parameters from the epidemic data.
In this paper, we perform both structural and practical identifiability analysis to classical epidemic models such
as SIR (Susceptible-Infected-Recovered), SEIR (Susceptible-Exposed-Infected-Recovered) and an epidemic model
with the treatment class (SITR). We performed structural identifiability analysis on these epidemic models using
a differential algebra approach to investigate the well-posedness of the parameter estimation problem.
Parameters of these models are estimated from different data types, namely prevalence, cumulative incidences
and treated individuals. Furthermore, we carried out practical identifiability analysis on these models using
Monte Carlo simulations and Fisher’s Information Matrix. Our study shows that the SIR model is both structu-
rally and practically identifiable from the prevalence data. It is also structurally identifiable to cumulative in-
cidence observations, but due to high correlations of the parameters, it is practically unidentifiable from the
cumulative incidence data. Furthermore, we found that none of these simple epidemic models are practically
identifiable from the cumulative incidence data which is the standard type of epidemiological data provided by
CDC or WHO. Our analysis with simple SIR model suggest that the health agencies, if possible, should report

prevalence rather than incidence data.

1. Introduction

In recent years, using outbreak data to interpret the future of an
emerging infection by means of mathematical models has gained sig-
nificant attention. Examples of such model-based forecasts of an
emerging pathogen are SARS [15,20], pandemic HIN1 Influenza [21],
Cholera in Haiti [22] and most recently Ebola Virus in West Africa
[7,11]. In early stages of an outbreak, it is crucial to specify some of the
key factors of the outbreak such as transmission rate of the pathogen,
the total outbreak size, the magnitude and the timing of the epidemic
peak, duration of the incubation and infectiousness periods. These key
factors determine an epidemiologically important threshold value
called basic reproduction number, %,. The basic reproduction number,
which is the average number of infections caused by one infected in-
dividual while being infectious in a totally susceptible population, de-
termines whether the disease will die out or persist in the population.

An algebraic expression for %, can be derived from the Ordinary
Differential Equations (ODE) system modeling the emerging disease
[16,25]. However many of the parameters of the basic reproduction
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number %, cannot be determined using clinical data, since such data
will be rare during the early stages of an outbreak. Hence, one uses
indirect methods to estimate the parameters of mathematical model
from the incidence reports provided by health agencies as the outbreak
progresses. Such estimates are obtained by fitting mathematical models
to the data. The only way to determine whether an emerging disease
will spread among the population or will be controlled highly relies on
interpreting the data to quantify the parameters of the model. The type
of data available through government agencies such as World Health
Organization (WHO) or Center for Disease Control (CDC) are not
standardized across organizations and situations. Depending on the
context, different reporting infrastructures often result in different types
of data with a wide range of qualities. The prevalence, new incidences,
cumulative number of incidences or deaths are some of the data types
that are available for further analysis [6,26]. The type of data being
used has also significant effect on the parameter estimation problem.
Thus, it is crucial to understand the process of estimating the para-
meters of the epidemic model from given data.

A fundamental prerequisite for the parameter estimation problem to
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be well posed is the structural identifiability of the mathematical model
of the emerging disease. Structural identifiability studies whether the
parameters of the model can be recovered from the observed state
(output) under ideal conditions such as noise-free data and error-free
model. The structural identifiability analysis can be done without any
actual experimental data, hence it is also called the prior identifiability.
It addresses the well-posedness of the parameter estimation problem
under ideal situations, so it is a necessary but not a sufficient property
to ensure the accurate identification of model parameters from the real
noisy data. A model which is structurally identifiable may not be
practically identifiable. On the other hand, if a model is structurally
unidentifiable, then any parameter estimation obtained by a numerical
optimization algorithm will be unreliable. A mathematical model which
is structurally identifiable, might be unidentifiable in practice.
Structural identifiability analysis relies on the assumptions that the
model structures are accurate and there are no measurement errors,
which are not valid in practice. Moreover, in real-world data, additional
unknown parameters such as the reporting rate (fraction of cases re-
ported) to be estimated and the lack of full time-course data from
currently-evolving epidemics pose even more challenges in model
parameter estimation. Therefore, even though the structural identifia-
bility analysis concludes that the parameters of the model are uniquely
identifiable, when noisy data are considered the parameter estimation
problem might reveal unreliable results.

In this work, we study both structural and practical identifiability of
several outbreak models (SIR, SEIR, and SITR) for different data types
(prevalence, cumulative incidences and treated individuals). Structural
identifiability of these simple infectious disease models have been
studied extensively in the literature [5,9,10,17,23]. Structural iden-
tifiability of SIR model with seasonal forcing have been studied in [10]
using the Lie derivatives approach, SIR model with demography and a
cholera model have been studied in [9] using differential algebra ap-
proach. The purpose of this study is to study both structural and
practical identifiability of simple outbreak models with different data
types. For example, as stated in [9] the SIR model is structurally
identifiable from both prevalence and incidence data. To ensure the
reliability of the parameter estimation, we continue with the practical
identifiability analysis of the epidemic models. We perform practical
identifiability analyses to further analyze the well-posedness of the
parameter estimation problem of the outbreak models. We found that
all these simple models considered in this study, SIR, SEIR, and SITR are
not practically identifiable from cumulative incidence data, which is
the data type reported by health organizations. This study shows that
cumulative incidences alone is not enough to identify the parameters of
simple infectious disease models (see Table 23).

The paper is organized as follows: the outbreak models (SIR, SEIR,
and SITR models) used in this study are introduced in Section 2. The
structural identifiability analysis of these models are performed in
Section 3. Section 4 summarizes the practical identifiability methods
such as Monte Carlo simulations and Fishers Information Matrix used in
this study. In Section 5, we perform numerical experiments with syn-
thetic data to all three epidemiological models. The MATLAB code for
this research has been made available at https://github.com/
NecibeTuncer/Outbreak Models. The use of synthetic data with
known noise structure and level allows us to investigate the practical
identifiability of the epidemic models for different data types. Fur-
thermore, in addition to synthetic data, we also performed the practical
identifiability of SEIR model with Ebola outbreak data in West Africa in
2014.

2. Epidemiological models
The goal of this study is to determine whether the parameters of the

epidemiological model can be estimated from the given data. For this
purpose we choose a selection of epidemiological models and data

Mathematical Biosciences 299 (2018) 1-18

structures. Since we are interested in an emerging infection, we con-
sider epidemiological models without any demography.

The first model is the simplest model structure of Susceptible-
Infectious-Recovered model. The population, N(t) is divided into three
nonintersecting classes susceptible S(t), infectious I(t), and recovered R

(t). The transmission is described by the standard incidence, ﬁ%, where

B is the transmission rate. The infected individuals recover at rate a and
move to the recovered class with full immunity. The first model takes
the following form.

ds SI
@ -
SIR Model: ﬂ = ﬁg —al,
dt N
ar =al,
dt 21

which is equipped with initial conditions S
) = Sy, I1(0) =1, R(0) =0. The total population N
(t) = S(t) + I(t) + R(t) satisfies the differential equation N’(t) = 0,
hence N (t) = N = Sy + I, is constant. The basic reproduction number

B

for this SIR model is %, = —. We are interested in estimating the

parameters p = [, «] for this‘xmodel.

As a second model, we consider an epidemic model which involves
compartments related to disease progression stages. In the above model
(2.1), it is assumed the susceptible individuals moved to the infectious
class immediately after infection. But for diseases such as influenza,
infected individuals do not become infectious immediately, since the
pathogen needs to replicate and reach a threshold value for host to
become infectious. So, for the next model we add a latent, or exposed,

class E(t) to the SIR model (2.1). Let 1 denote length of the latent

period, the time for which an individual is infected but not yet in-
fectious. The SEIR model takes the following form.

das
dr
dE
dr
dI

dr

d—R =al,

dt (2.2)
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SEIR Model:
=nE —al,

which is equipped with initial conditions S
(0) = Sp, E(0) = Ey, I(0) =0, R(0) =0. The total population N(t) is

constant and the basic reproduction number is %, = E For this model,

we estimate the parameters p = [8, 5, a]. SEIR (2.05) is one of the
models that was used to predict the 2014 Ebola outbreak in West Africa
[1]. In that study, basic reproduction number %, is estimated by fitting
the SEIR model (2.2) to the cumulative number of cases and deaths
provided by the WHO [1].

For the next model we consider an epidemic model which in-
corporates the strategies applied for disease control. Some examples of
measures taken to prevent and control infectious diseases involve
quarantine, isolation, vaccination and treatment. We are going to take
treatment for the case of epidemic models which includes control
measures. Let T(t) be the number of individuals in the treatment class.
Suppose that fraction y per unit time of infected individuals are selected
for treatment and move to the treatment class. Individuals in the
treatment class can infect susceptible individuals at a reduced trans-
mission rate 8 where 0 < § < 1. The treatment model takes the fol-
lowing form.
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