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ARTICLE INFO ABSTRACT

High stability of crop yields is a key objective in crop production and breeding, especially under the conditions of
a changing climate. Reliable indices are therefore needed for quantifying yield stability. Recently it was shown
that some frequently used indices of yield stability, such as the coefficient of variation (CV) may be wrongly
Rye o interpreted if there is a systematic dependence of the variance 0 from the mean yield p following Taylor’s power
,i:zg;f:;’:f; Jaw law. Here we propose a method to adjust the standard CV to account for the systematic dependence of 0* from .
Wheat This adjusted CV can be used as a stability index that is expressed in units that are equivalent to the standard CV,

as a percentage of the mean, and can therefore be used in agronomic studies that aim to provide guidance for
farmers and advisors. Applying this adjusted CV (called aCV) to FAO cereal yield data, we show that the tem-
poral yield stability of both wheat and rye has weakly but significantly decreased over the last five decades and
this trend was not picked up with the standard CV in wheat, and was more marked with the aCV than with the
standard CV in rye. For the intensifying research on yield stability in agronomy, the suggested method is a novel
alternative to estimate yield stability more conclusively, allowing straight-forward interpretation and providing
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the basis for developing cropping systems with higher yield stability in the future.

1. Introduction

High crop yield stability is an important goal shared by farmers,
breeders and consumers. In the face of global change and increasing
environmental variability, working towards this goal is becoming ever
more imperative (Peltonen-Sainio et al., 2010; Reidsma et al., 2010).
Substantial efforts are therefore dedicated to reducing variability in
crop performance, e.g. through plant breeding (Miihleisen et al., 2014;
Chamekh et al., 2015) and agronomic management (e.g. Smith et al.,
2007). Adaptation strategies are also related to the socio-economic
conditions and farm management (Reidsma et al., 2010). One of the
critical issues in this endeavour is the use of appropriate measures of
yield stability. Over the past few decades, scores of yield stability in-
dices have been proposed (Eberhart and Russell, 1966; Becker, 1981;
Becker and and Léon, 1988; Huehn, 1990; Eghball and Power, 1995;
Piepho, 1998; Dehghani et al., 2008). An extensive literature deals with
the comparison of various stability indices (e.g. Becker and and Léon,
1988; Crossa, 1988; Ferreira et al., 2006). Often, however, the inter-
pretation of the results from stability analyses is not easy. This is partly
because different stability indices may lead to contrasting conclusions

as they reflect different concepts of stability (Dehghani et al., 2008). In
addition, the relatively high complexity of the calculations involved in
quantifying stability makes it difficult to separate ‘true’ effects from
mathematical artefacts. In agronomic and ecological research, a pop-
ular index of yield stability is the coefficient of variation (CV) (Francis
and Kannenberg, 1978; Kiichenmeister et al., 2012; Ray et al., 2015; Di
Matteo et al., 2016). The CV is defined as the standard deviation o
divided by the mean y, and is expressed as percentage of the mean:
CV = 0/11r100%.

Recently it has been shown that under certain conditions, the un-
guarded interpretation of the CV of crop yield data may be misleading
(Doring et al., 2015). In particular, it was demonstrated that crop yield
data, especially when it spans over a large range, may often follow a
power-law relationship between the sample variance 6> and the sample
mean |, and in this case the CV tends to typically decrease with in-
creasing mean, according to the data published so far. The power-law
relationship, 02 = Ap®, is known as Taylor’s Power Law (TPL). Loga-
rithmic transformation of TPL results in a linear relationship, expressed
as the equation log(c®) = a + b log(u) with a = log(A). The re-
lationship was first extensively described by the British ecologist and
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entomologist Roy Taylor (Taylor, 1961) and has been detected in
hundreds of data sets from population ecology (Cohen et al., 2012,
2013) and multiple other contexts and sciences (Duch and Arenas,
2006; Eisler et al., 2008). Because TPL has also been found in crop yield
data (Doring et al., 2015), caution is needed when interpreting the CV.
In particular, if TPL holds, then CV = p?2™! g¢%/2 where a and b are the
regression parameters (intercept and slope) of the TPL log-log regres-
sion and g is the basis of the logarithm. Thus, the CV may change in a
non-linear manner with increasing mean, unless b = 2. For most crop
yield data sets analysed for the presence of TPL-like relationships be-
tween mean and variance, the slope b has been found to be < 2 (Doring
et al, 2015). In these cases, the CV systematically decreases with in-
creasing [ in a nonlinear way.

Stability parameters need to show independence from the mean,
though. Otherwise it would not be possible to differentiate true effects
of stability from changes in the mean; information on stability per se
would be confounded by information contained in the mean.
Specifically, when using the CV, large means will often (if b < 2) be
automatically associated with low CVs, just because of a mathematical
artefact, rather than biologically or agronomically meaningful me-
chanisms. To solve this problem, it is necessary to account for sys-
tematic dependence of the variance from the mean. One method is the
stability index POLAR, which calculates the residuals from the linear
regression of log(o?) against log(u) (Doring et al., 2015). The new
method presented here is an adjusted coefficient of variation (aCV) that
removes systematic dependence of the standard CV from the mean. In
contrast to the units of POLAR stability that are the logarithm of
squared yield units, the aCV is expressed in percentages of the mean
and thereby facilitates application in agronomic studies that aim to
provide guidance to farmers and advisors. In particular, the aCV en-
ables users to interpret results on yield stability more easily and thereby
to make decisions on adjusting management.

The objective of this article is to demonstrate a novel method to
quantify yield stability by adjusting the standard CV such that depen-
dence from the mean yield is removed. We apply the novel stability
index that we call ‘scale-adjusted coefficient of variation’ using a pub-
licly available data set of cereal yields, obtained from the Food and
Agriculture Organisation (FAO) statistics website, to examine global
trends of cereal yield stability.

2. The adjusted coefficient of variation

Here we show how the scale-adjusted coefficient of variation (aCV)
is calculated in four steps:

2.1. First step

Means () and variances (62) are calculated for a subset of data. This
creates a list of means {2 ; paired with variances 62 ;, that is, each pair
(with index i) consists of a mean and a variance. Following TPL, a linear
regression is calculated for log;o of the variance over the log;, of the
mean. With v;= log(62;) and m; = log({;), the linear regression isv = a
+ bm.

2.2. Second step

The residuals u; from this regression line, the i.e. the Power Law
Residuals (POLAR), are calculated as

(€8]

u; = v;—(a + bm;)

2.3. Third step

We adjust the logarithm of the variance which is subsequently used
for calculating the coefficient of variation. The adjusted logarithm of
the variance 7; is
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Fig. 1. Example illustrating the procedure for correcting the v = log(82) by
setting the TPL slope to b = 2. The original TPL regression follows the equation
v = a + bm, where m = log(2), in this case with b < 2 (bold line). Individual
points (m;v) (e.g. the grey point) deviate from the regression by u;. Tosetb = 2,
the original regression line is rotated around the average value /1 over all m,
resulting in the thin line represented by the equation v = d@ + 2m. Because v* =
a + bm = d+ 2m, the adjusted intercept @ can be calculated asd@ = a + (b—
2) m (see Eq. (5)). The adjusted value for log(62) (represented by the white
point) can then be calculated by inserting m into the new v = @ + 2m and
adding u;. This results in % = 2m; + @ + u;.

(2)

Vi:aN+ 2m; + u;

With @ =a + (b—2)m 3

where m = %Z m;.As illustrated and explained in Fig. 1, this procedure
adjusts v by setting the TPL slope to b = 2, and rotating it around 7.
2.4. Fourth step

The final step is using the adjusted logarithm of the variance for
calculating the adjusted coefficient of variation ¢; = aCV;.

M ()]

where g is the basis of the logarithm (which was 10 in our case).
Combining and simplifying the Egs. (1)—(4) leads to

E; — Ai [lo(Z—b)mi+(b—2)ﬁ+vi]0-5.100%
Hi (5)

These calculations are exemplified in Table 1 for a small subset of
the wheat yield data.

If TPL holds, then for a particular point i, the anticipated coefficient
of variation ¢; is

N A%—l a
¢ = [ g2 -100%

(6)
Here, the TPL slope a and the intercept b are used to calculate the
coefficient of variation that would be expected for g, if there was no
deviation from the TPL regression line (i.e. if u = 0). When b < 2, the
anticipated CV decreases non-linearly with increasing mean. For ad-
justing the coefficient of variation we have removed the dependence of
the CV from the mean by setting the slope b to 2 in Egs. (2) and (3), so
that a2 = 40 = 1.

In short, the adjusted coefficient of variation sets the TPL slope to 2,
so that the dependence from the mean disappears.
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