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a b s t r a c t 

Several algorithms have been used for mass transfer between particles undergoing advective and macro-dispersive 

random walks. The mass transfer between particles is required for general reactions on, and among, particles. 

The mass transfer is shown to be diffusive, and may be simulated using implicit, explicit, or mixed methods. 

All algorithms investigated are accurate to  (Δ𝑡 ) . For N particles, the implicit and semi-implicit methods require 

inverse matrix solutions and  ( 𝑁 

3 ) calculations. The explicit methods use forward matrix solves and require only 

 ( 𝑁 

2 ) calculations. Practically, this means that naïve implementations with more than about 5000 particles run 

more reliably using explicit methods. 

1. Introduction 

The random-walk particle-tracking (RWPT) method was originally 

developed to simulate advective and dispersive transport of conservative 

or simply (linearly, instantaneously reversible) sorbing solutes ( Labolle 

et al., 1996; Salamon et al., 2006 ). The method is attractive because it 

does not suffer from numerical dispersion or negative concentrations. 

The method was extended ( Benson and Meerschaert, 2008 ) to nonlin- 

early interacting (bimolecular) chemical reactions by sequentially calcu- 

lating the product of the probabilities of particle collision and thermody- 

namic reaction. The actual reactions were then performed using Monte 

Carlo methods and particles were “born ” or “killed ” by a comparison of 

reaction probability to randomly-generated numbers. The method was 

originally restricted to one, or a series of, bimolecular reactions ( Benson 

et al., 2017; Bolster et al., 2016; Ding et al., 2012; Ding and Benson, 

2015; Ding et al., 2017; Paster et al., 2013; 2014 ), because any particle 

was composed of only one chemical species. If the reaction is viewed as a 

mixing process, which may be denoted 2 𝑝𝐴 + 2 𝑞𝐴 → ( 𝑝 + 𝑞) 𝐴 + ( 𝑝 + 𝑞) 𝐴, 
then particles can carry as many species as desired, and mass transfer 

of all species occurs between particles ( Benson and Bolster, 2016 ). The 

mass transfer still only occurs between particles with some probability 

of collision, and these probabilities may be viewed as the weights 

associated with mass transfer. Benson and Bolster (2016) suggested 

that this collision-weighted mass transfer process follows a diffusion 

equation, although this was not shown rigorously. Furthermore, those 

authors chose a particular explicit mass transfer scheme, while later 
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studies used an implicit scheme ( Engdahl et al., 2017 ). Because both 

explicit and implicit schemes appear to work, it is plausible that a 

combination of these, similar to the Crank–Nicolson (C-N) algorithm, 

may increase accuracy. The purpose of this paper is to first develop 

a framework to investigate whether the “action ” of the mass-transfer 

algorithm proposed by Benson and Bolster (2016) is actually diffusive. 

Once this diffusive nature is shown, the convergence rates of the several 

algorithms that immediately present themselves can be demonstrated. 

2. Semi-implicit scheme 

Among a total of N particles located at positions x i , the collision- 

weighted mass exchange over a time step Δt is written 

𝑚 

𝑘 +1 
𝑗 

− 𝑚 

𝑘 
𝑗 = 

𝑁 ∑
𝑖 =1 

1 
2 

(
𝑚 

𝑘 + 𝓁 
𝑖 

− 𝑚 

𝑘 + 𝓁 
𝑗 

)
𝑃 ( |𝑥 𝑖 − 𝑥 𝑗 |; Δ𝑡 ) , (1) 

where the superscript denotes timestep (i.e., 𝑚 

𝑘 
𝑗 
= 𝑚 𝑗 ( 𝑘 Δ𝑡 )) , 𝓁 = 0 , 1 , 

and 𝑃 𝑖𝑗 = 𝑃 ( |𝑥 𝑖 − 𝑥 𝑗 |; Δ𝑡 ) is the probability of particle collision. This 

collision probability is shown to depend only upon the distance between 

particles, though it may have a more complicated form if non-isotropic 

or position dependent diffusion/dispersion paradigms are considered. 

Nonetheless, while the functional form of P may change, the mass 

transfer algorithm would be unaltered. For particles undergoing Brow- 

nian motion, this is the convolution of each particle’s Gaussian location 

density, which is also Gaussian (see Benson and Meerschaert, 2008; 

Paster et al., 2014 ). If 𝓁 = 1 , the calculation is implicit, and if 𝓁 = 0 , 
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the calculation is explicit (which may take several forms, for example, 

sequentially calculated or simultaneously calculated). A semi-implicit 

form is reminiscent of the Crank–Nicolson scheme and uses equal 

amounts of k and 𝑘 + 1 masses, so that we may write (1) as 
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which uses 𝛼 = 1, 1/2, and 0 for implicit, semi-implicit, and explicit 

formulations respectively. Now denote the masses as a vector, i.e., 

𝒎 = [ 𝑚 1 , … , 𝑚 𝑁 

] 𝑇 , and if one constructs a matrix of particle collision 

probabilities P with entries P ij , then (2) can be expressed as [
𝑰 + 

𝛼

2 
( diag ( 𝟏 𝑷 ) − 𝑷 ) 

]
𝒎 

𝑘 +1 = 

[
𝑰 − 

1 − 𝛼
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]
𝒎 
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where 𝑨 = diag ( 𝒙 ) denotes a diagonal matrix, A with the entries of 

vector x along the main diagonal and 1 is an 1 ×N vector of ones. 

3. Explicit schemes 

Clearly, setting 𝛼 = 0 in (3) results in an explicit forward matrix 

calculation. We call this matrix-explicit. All of the masses used to cal- 

culate the transfer magnitudes are from the beginning of the timestep. 

Another method sequentially calculates (2) for 𝑗 = 1 , … , 𝑁 . After the 

j th particle is updated, its new mass can be used on the right side of 

the equation for subsequent calculations. If the sum is calculated using 

one fixed value for m j , then we call this vector-explicit, calculated as 

followed (employing pseudo-code, where ◦ denotes the entry-wise, or 

Hadamard, product) 

for 𝑗 = 1 ∶ 𝑁 

𝚫𝒎 = 

1 
2 
(
𝒎 ( 𝑡 ) − 𝑚 𝑗 ( 𝑡 ) 
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𝑚 𝑗 ( 𝑡 + Δ𝑡 ) = 𝑚 𝑗 ( 𝑡 ) + 

∑
𝚫𝒎 

end . (4) 

Furthermore, if the sum is expanded, then each calculation may use 

an updated m j accounting for all previous terms in the sum. We call 

this explicit-sequential, and it is calculated as follows 

for 𝑖 = 1 ∶ 𝑁 

for 𝑗 = 1 ∶ 𝑁 

Δ𝑚 = 

1 
2 
(
𝑚 𝑖 ( 𝑡 ) − 𝑚 𝑗 ( 𝑡 ) 

)
𝑷 ( 𝑖,𝑗) 

𝑚 𝑖 ( 𝑡 + Δ𝑡 ) = 𝑚 𝑖 ( 𝑡 ) − Δ𝑚 

𝑚 𝑗 ( 𝑡 + Δ𝑡 ) = 𝑚 𝑗 ( 𝑡 ) + Δ𝑚 

end 

end . 

(5) 

This method has a computational advantage in that there is no 

matrix multiplication required (just two loops over particle numbers), 

and hence it can accommodate huge particle numbers. It turns out that 

the vector-explicit algorithm is unstable for all ranges of parameters 

tested here and will not be explored further. 

4. Accuracy as a function of repeated operation 

In general, the particle positions change due to non-uniform and 

potentially unsteady mean velocity. The particles are also typically 

given a random component to represent diffusion and hydrodynamic 

dispersion; therefore, each simulation in an ensemble has subtle dif- 

ferences ( Labolle et al., 1996 ). This is one advantage of the method: 

the evolving particle spacings (controlled by the number of particles) 

and masses represent the heterogeneity of concentrations —as defined 

by evolving auto- and cross-correlation functions —and the resulting 

mixing process ( Benson et al., 2017; Bolster et al., 2016; Paster et al., 

2014 ). However, in order to check accuracy and convergence in this 

paper, we must artificially remove the randomness of simulations. This 

is done by eliminating the random movements of particles and spacing 

them evenly on the interval (0,1), where the number of particles 

dictates the size of the constant spacing. This also allows us to construct 

the classical Eulerian implicit finite-difference (FD) approximation of 

diffusion using a 3-point space stencil for comparison. (We stress that 

our particle collision method may not be the most efficient way to sim- 

ulate diffusion on a fixed grid of points, but the method will continue 

to work no matter how “mixed-up ” the particle positions become.) 

We track errors over time as functions of N, Δt [T], and total 

time k Δt . In all simulations we choose a diffusion coefficient 𝐷 = 10 −3 
[L 2 T 

−1 ] and a total simulation time of 10 s (unless specified otherwise). 

For an initial condition (IC) we choose a Heaviside function to represent 

the most unmixed (and error-inducing) possible state. We also choose 

a Gaussian IC to determine if errors remain more stable over time. Our 

measure of error between simulations and analytic solutions uses the 

root-mean-square error (RMSE), 

RMSE ( 𝒔 − 𝒂 ) = 

( 

1 
𝑁 

𝑁 ∑
𝑗=1 

( 𝑠 𝑗 − 𝑎 𝑗 ) 2 
) 1∕2 

, 

where s j and a j denote simulated and analytic solutions at spatial point 

j . We also utilized the infinity norm, max 𝑗 ( |𝑠 𝑗 − 𝑎 𝑗 |) , which showed 

similar scaling and is not shown here for brevity. 

To illustrate the motivation for this technical note, for 𝑁 = 50 we 

see that all solutions appear diffusive by visual inspection of the plots 

of 𝑚 ( 𝑥, 𝑡 = 10) ( Fig. 1 (a)). On the other hand, considering the various 

solution methods after one time step (here Δ𝑡 = 0 . 1 ), it is clear that 

the methods differ significantly in their “one-step ” approximation of 

diffusion. To isolate error incurred by time discretization, we first fix 

Δ𝑡 = 0 . 1 and vary the number of particles ( Fig. 2 ). The errors are similar 

for 𝑁 = 500 , 1000 , and 5000, indicating that, as long as a sufficient, 

minimum number of particles is used, increasing particle number 

does not appreciably decrease error. In subsequent simulations we 

use 𝑁 = 1000 for consistency. All methods achieve their greatest error 

at the beginning of the simulation, due to the unmixed, or infinite 

gradient, IC. Repeated applications of the operators result in reduced 

error. In other words, repeated application of the matrix operations 

converges to a true diffusive operator. This is discussed further in 

Section 6 . Also evident on the plot is the relatively poor performance of 

both implicit and semi-implicit particle methods, relative to the explicit 

matrix particle method that tends to converge quickly to the accuracy 

of the Eulerian finite-difference solution to which we compare. 

5. Accuracy as a function of 𝚫t 

For a given number of particles (here 𝑁 = 1000 ), the overall errors 

of all methods decrease over repeated application. However, we note 

that the mass-transfer algorithm, investigated here, is only one compo- 

nent of a particle-tracking simulation that may involve other processes 

like diffusive random walks, advective motion, and chemical reaction. 

If these other processes are included, it may negate this property. 

One might expect that, similar to the Crank–Nicolson time-stencil in 

an FD implementation, the semi-implicit solutions would improve as 

Δt decreases, relative to the explicit and implicit methods, but this 

is not the case. All methods tested here have errors approximately 

proportional to Δt ( Fig. 1 (b)). 

To better understand the relation between error and Δt , we wish to 

find the power p such that  𝐴 ∶= RMSE ( 𝒔 − 𝒂 ) < 𝑐(Δ𝑡 ) 𝑝 =  (Δ𝑡 𝑝 ) , given 

the simulated and analytic solution vectors ( s and a ) and some constant 

c . Conducting a convergence analysis for a one-second simulation and 

refining Δt by successive halves, we compute an experimental value of 
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