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A B S T R A C T

Efforts to evaluate sinkhole formation and quantify the controlling factors are hindered by the lack of historical
observations or coarse resolution datasets in many areas. We applied recent advances in GIS-based sinkhole
mapping and spatial statistics to comprehensively investigate the factors controlling sinkhole formation in the
mantled karst setting of Dougherty County, Georgia. Sinkholes form at varying spatial and temporal scales
within the test site. A three-stage methodology was conducted. Firstly, 275 sinkholes that formed or were en-
larged between 1999 and 2011 were detected by comparing the results of sinkhole inventories derived from two
DEMs acquired in 1999 and 2011. Additionally, a LiDAR DEM (1m resolution) was used to gather a spatially
detailed sinkhole inventory of 3412 sinkholes. The sinkhole inventory data was converted into sinkhole density
maps for subsequent analyses. Ordinary least squares (OLS) and geographically weighted regression (GWR)
spatial statistical models were applied to quantify the impact of controlling factors on sinkhole density.
Controlling factors included geologic, hydrologic, anthropogenic, hydrogeologic, and geomorphologic variables.
For the two sinkhole inventory datasets analyzed, overburden thickness, aquifer fluctuations, and proximity to
fractures, streams, and wetlands were the most influential controlling factors on sinkhole formation (GWR p-
values< 0.05). Lastly, the spatial statistics results were used to 1) produce interpolated prediction sinkhole
maps and 2) evaluate the accuracy of the spatial statistics' sinkhole density predictions. Results provide as-
sessments of controlling factors on sinkhole formation and demonstrate the potential for similar applications in
other karst areas with a time series of DEMs and similar ancillary datasets. The adapted GIS-based approach does
not replace procedures that depend on comprehensive field surveys for both sinkhole inventory and controlling
factor data acquisition, though it offers estimates for understanding sinkhole development over large areas to
help select proper mitigation strategies.

1. Introduction

Karst topography can be found at any latitude and elevation around
the world, with rock units potentially containing karst features covering
approximately 20% of the Earth's land surface (Stokes et al., 2010; Ford
and Williams, 1989). Karst landscapes are characterized by three pri-
mary morphological features: input landforms that direct surface water
underground (i.e., sinkholes), subsurface conduit systems (i.e., fractures
and caves enlarged by solution), and discharge areas (i.e., springs)
(Ford et al., 1988). Karst features, specifically sinkholes, present ha-
zards and engineering challenges to residential, commercial, industrial,
and agricultural infrastructure, serve as entry points for groundwater
contaminants, and cause vertical deformation (i.e., subsidence) by
transporting sediment underground (Hyatt and Jacobs, 1996; Waltham
et al., 2005; Galve et al., 2009a; Newton, 1987).

Sinkholes develop where the rock below the ground surface

undergoes chemical weathering, or dissolution, via groundwater
movement and infiltration from surface water or precipitation. These
rock types are typically evaporates (e.g., salt beds, gypsum and anhy-
drite), carbonates (e.g., limestones and dolomite) and sandstones.
Underground voids are created through chemical weathering processes.
Soils are transported into the voids over varying time intervals via
gravity, liquefaction, and other geologic processes, subsequently low-
ering the ground surface and forming a sinkhole. The processes of
dissolution and sediment transportation where cavities form create
different types of sinkholes. Dissolution sinkholes, cover-subsidence
sinkholes and cover-collapse sinkholes are common sinkholes that
occur in karst environments.

Sinkholes are relatively common in karst environments. In the
United States (US), approximately 20% of US territory is prone to
sinkholes. Florida, Texas, Alabama, Missouri, Kentucky, Tennessee, and
Pennsylvania are the area's most susceptible to sinkholes where the rock
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type is primarily carbonates (limestone) and/or evaporate rocks (salt
and gypsum). We will be able to further our knowledge of the physical
mechanisms driving sinkhole formation by quantifying the sinkhole
formation mechanisms using geostatistical-based prediction analysis.
Additionally, our approach may be used to understand sinkhole for-
mation processes in other karst environments.

Sinkhole formation is the result of complex interactions between
hydrologic (e.g., flooding), geologic (e.g., overburden thickness), geo-
morphologic (e.g., elevation), anthropogenic (e.g., land use), climatic
(e.g., precipitation), hydrogeologic (e.g., aquifer fluctuations), and
other factors (e.g., geotechnical soil strength) acting with fluctuating
magnitudes over varying spatial and temporal scales. It is difficult to
directly observe and quantify the influence of each factor responsible
for sinkhole formation because the majority of the factors operate in the
subsurface and over generally long time scales. Additionally, two or
more of these processes often operate in conjunction to form or enlarge
an existing sinkhole (Ford et al., 1988). However, inferences about the
controls on sinkhole formation can be made by measuring the re-
lationships between sinkhole density and the spatial distribution of the
factors that control sinkhole occurrence (Doctor and Doctor, 2012).

Although sinkhole formation is site-specific, relationships between
sinkhole density and controlling factors can be determined in areas with
historical data on sinkhole development and an abundance of ancillary
datasets to accurately represent sinkhole formation controlling factors
and mechanisms (Wilson and Beck, 1992). Panno et al. (2013) related
sinkhole location and evolution to hydrogeologic (e.g., water table
depth and storage coefficients), hydrologic (e.g., recharge rates), and
geologic (e.g., bedrock topography) factors in the sinkhole plain of Il-
linois, USA. Hubbard (2001) analyzed sinkhole distribution in the
Valley and Ridge Province, Virginia, USA, and correlated the highest
sinkhole densities with lithology (e.g., bedding planes), geologic
structures (e.g., fold and fault axes), and hydraulic gradients related to
proximity to incised segments of rivers. Al-Kouri et al. (2013) found
that sinkhole occurrence was most influenced by urban land use, fault
distribution, and proximity to surface water features. In the Ebro Valley
(Spain) evaporite karst setting, sinkhole susceptibility and hazard have
been determined by quantifying the relationships between sinkhole
type and distribution and different geomorphologic units, elevation,
alluvium thickness, piezometric surface, land use, and electrical con-
ductivity of the surficial aquifer (Galve et al., 2009a, 2009b; Gutiérrez
et al., 2007; Gutiérrez, 2013; Lamelas et al., 2008; Galve et al., 2008).
Doctor and Doctor (2012) and Doctor et al. (2008a, 2008b) measured
the influence of geologic (e.g., distance to fractures and fold axes) and
hydrologic features (e.g., distance to streams and ponds) to sinkhole
locations in Virginia, West Virginia, and Maryland, USA, karst regions.
Yizhaq et al. (2017) constructed a stochastic cellular automata model to
understand and observe the sinkholes along the Dead Sea in Israel. This
model studies the scale-free behavior and growth of the sinkhole area in
time due to the formation of the dissolution of subsurface salt layers as
a result of the replacement of hypersaline groundwater by fresh
brackish groundwater. Gao and Alexander Jr (2008) input bedrock type
and overburden thickness to construct sinkhole probability maps in
southeastern Minnesota and northwestern Iowa. Ozdemir (2015) re-
lated groundwater level declines and seasonal fluctuations, drainage
line and fault density, and cover thickness decreases to an increase in
sinkhole occurrence in the Karapinar Region of Turkey.

This study focused on the mantled karst terrain of Dougherty
County, Georgia, USA (Fig. 1), an area with well-documented sinkhole
development (Brook and Allison, 1986; Hyatt and Jacobs, 1996;
Gordon et al., 2012; Hyatt et al., 2001). Brook and Allison (1986) used
topographic maps and 1:24,000 scale, color infrared images to identify
sinkholes based on the presence of surface water features, vegetation
and soil moisture patterns, and topographic expression. The mapped
sinkhole distribution and color infrared images were used to map
fractures, joints, and lineaments. Hyatt and Jacobs (1996) found that
flooding of the Flint River in 1994 triggered the formation of at least

312 sinkholes in and around the Albany area of northern Dougherty
County; 88% of which formed within flooding limits. Liquefaction
mechanisms were involved in the formation of the 312 sinkholes as
unconsolidated overburden was transported into bedrock cavities and
buoyant support was reduced as flood waters receded. Hyatt and Jacobs
(1996) and Xu et al. (2016) noted that the sinkholes followed a linear
pattern, which suggests that joints and fractures influence sinkhole
distribution. Following Tihansky (1999), Gordon et al. (2012) sug-
gested that rapid fluctuations of the Upper Floridan aquifer and over-
burden removal (2.5–4.5m) for construction caused localized sinkhole
formation in a municipal groundwater well field (Fig. 2). In the covered
karst region of Lowndes County, Georgia, Hyatt et al. (2001) suggested
that several factors had an influence on sinkhole locations, including
elevation, soil type, overburden thickness, and potentiometric head
levels.

Of the many approaches used to understand and/or predict sinkhole
formation, Galve et al. (2009b) found that nearest neighbor and sink-
hole density methods perform better than other techniques when
identifying areas of sinkhole susceptibility, but those methods do not
include sinkhole formation explanatory variables. Thus, their ability to
measure the influence of various factors on sinkhole development was
limited (Doctor and Doctor, 2012). Geographically weighted regression
(GWR) is a technique used to measure spatially varying relationships
(ESRI, 2012), such as the influence of controlling factors on sinkhole
formation. GWR models a dependent variable by building a unique
regression equation for individual points (e.g., sinkholes) and weighting
the influence of each independent variable based on distance from the
position of the dependent variable. GWR analysis results can be used to
measure the overall fit of a model and quantify the degree of influence
of each independent variable on a given dependent variable value.

Previous studies (Brook and Allison, 1986; Gordon et al., 2012;
Hyatt and Jacobs, 1996) have not statistically quantified the relation-
ships between sinkhole occurrence and sinkhole formation factors in
the study area. The goal of this research was to evaluate the influence of
controlling factors on sinkhole distribution in the mantled karst en-
vironment of southern Dougherty County, Georgia and compare it to
other karst terrains. The first objective was to produce sinkhole in-
ventory maps for 10m resolution Digital Elevation Models (DEMs) from
1999 and 2011. Sinkholes that formed or enlarged between 1999 and
2011 were identified, hereafter referred to as temporal-difference (TD)
sinkholes, for a spatiotemporal analysis of sinkhole formation. The
second objective was to create a high-resolution sinkhole inventory
map from a 1m resolution LiDAR (Light Detection and Ranging) DEM.
Spatial statistical techniques were utilized on these two sinkhole in-
ventory datasets (TD and LiDAR) to fulfill the third objective of mea-
suring the influence of controlling factors on sinkhole formation. Fi-
nally, sinkhole prediction maps were produced from spatial statistics
results.

2. Study area

The study area, covering 183 km2, is located in southern Dougherty
County, Georgia, and is part of the Dougherty Plain region of the
Coastal Plains Physiographic Province in southwest Georgia (Fig. 1).
Precipitation averages 1270mm/year but has shown high annual
variability (Stewart et al., 1999). Long-term precipitation patterns de-
termined from a 12-month Standardized Precipitation Index (SPI) show
drought conditions occurred three separate times during the study
period: 1998–2002, 2006–2008, and 2011–2013, which could intensify
the formation of sinkholes.

In the occurrence of a drought the water table drops losing its sta-
bility. The heterogeneous hydraulic response during this period can
cause some depressurization of the upper aquifer, which in turn can
affect the stress and stability of the system (Linares et al., 2017). During
this event the water table drops, due to stability and gravitational mass
movements occurring in the subsurface. Moreover, in karst
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