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A B S T R A C T

Obtaining reliable soil hydraulic properties is essential for correct simulations of soil water content (SWC), which
is a key variable in countless applications such as agricultural management, soil remediation, aquifer protection,
etc. Soil hydraulic properties can be measured in the laboratory; however, the procedures are laborious and
costly, and may provide estimates different from those observed in the field. An alternative approach is to obtain
soil hydraulic properties using a soil water flow model in conjunction with SWC monitoring data. The goal of the
present study was to analyze the efficiency of obtaining hydraulic properties utilizing data assimilation (DA)
based on the Ensemble Kalman Filter method. Two soil textures in homogeneous soil profiles, and four climatic
conditions were considered; observations of soil moisture data were synthetically generated using HYDRUS-1D
and subsequently perturbed by the application of the conditional multivariate normal distribution. When ob-
served SWC varied in relatively narrow range as a consequence of the forcing imposed by dry climate atmo-
spheric boundary conditions, data assimilation provided sets of properties that led to good Richards model
performance, with the RMSE below 0.02 and/or R2 above 0.8 after a period of just 100 days and above 0.98 after
a period of three years in all climate/soil conditions. However, the closeness of parameters from DA to the
parameters used to generate the synthetic data depended on weather conditions and soil properties. One year
was adequate to obtain reliable soil hydraulic properties with data assimilation.

1. Introduction

Soil water plays an essential role in the global water cycle: it has an
important impact on weather, climate and energy fluxes at the land
surface, drives agricultural management, and gives shape to the orga-
nization of ecosystems. The role of soil water is extremely significant in
arid and semiarid regions, where water scarcity has an important im-
pact on plant production (Vereecken et al., 2008) and soil salinization
(Ritzema, 2016), and overall imposes constraints to society develop-
ment (Lattemann and Höpner, 2008). A wide variety of activities rely
on estimates of changes in soil water content (SWC) under various
environmental and anthropogenic controls. Such estimates employ soil
hydraulic parameters quantifying the soils' ability to hold and transmit
water.

Measuring soil hydraulic properties in the laboratory is labor- and
time-consuming, and may provide results different from those observed
in the field due to differences in the soil volume involved, soil dis-
turbance during sampling, short circuit flow through macropores or
along core wall in lab, continuity in the soil profile versus depth, etc.

(Ramos et al., 2006; Rezaei et al., 2016). An important viable alter-
native is to derive soil hydraulic properties from soil water flow mod-
elling in conjunction with SWC monitoring. One methodology available
for that purpose is data assimilation (DA).

Data assimilation methods improve the model performance by in-
tegrating observed data (i.e., system states) into the modelling process
in order to correct the model predictions (Evensen, 2009; Plaza et al.,
2012). Data assimilation was initially applied to atmospheric and
oceanic system modelling (Lahoz et al., 2010), where it has become a
common approach. The DA has a substantial history of applications in
soil water modelling (Or and Hanks, 1992; Pan et al., 2012; Vereecken
et al., 2008). It was originally used with observed states as initial
conditions, and updated in successive runs with new observation states,
Chirico et al. (2014) compared different Kalman filtering alternatives.
Later on, the DA has been applied to jointly update model states and
soil hydraulic parameters (Li and Ren, 2011; Medina et al., 2014;
Montzka et al., 2011; Moradkhani et al., 2005b; Song et al., 2014; Vrugt
et al., 2005a; Vrugt et al., 2005b).

The Ensemble Kalman Filter (EnKF) is one of the most widely used
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DA methods (Moradkhani et al., 2005b; Zhang et al., 2016). It is a se-
quential Monte Carlo-based method, first introduced by Evensen (1994)
and later clarified by Burgers et al. (1998). In brief, an ensemble of
models is randomly generated, then propagated in time to the to the
next update event. For each update event, a state error covariance
matrix is calculated from the state values simulated by the different
ensemble members before the update (a priori). This covariance state
matrix is used jointly with the covariance matrix of observations at the
same time to obtain a new set of model states (the posterior). The EnKF
has been proven to be an efficient approach to correct the Richards
equation-based soil flow modelling results (Das and Mohanty, 2006).
Vereecken et al. (2008) and Vrugt et al. (2005a) noted that the con-
ceptual simplicity, relative ease of implementation and computational
efficiency make the EnKF method an attractive option for sequential
data assimilation in vadose zone hydrology. The assumption of a
Gaussian distribution in errors that EnKF does cannot always be ac-
cepted in hydrological modelling, and new data assimilation alter-
natives such as particle filter, firstly introduce in hydrology by
Moradkhani et al. (2005a), avoid the requirement of error Gaussian
distribution; toward that end, the Markov Chain Monte Carlo method
(Moradkhani et al., 2012; Vrugt et al., 2013) appears to be a powerful
technique.

Li and Ren (2011) demonstrated the efficiency of the DA in joint
state–parameter estimations for soil water dynamics in experiments
with constant boundary conditions compared to standard calibration.
These authors researched the applicability of the EnKF to assimilate
data from infiltration and drainage experiments. Erdal et al. (2012)
demonstrated applicability of EnKF to the dataset collected from lysi-
meters with soil under wheat over the growing season. Erdal et al.
(2014) showed that the EnKF could result in reasonable estimates of
effective hydraulic properties even if the model has structural errors. Li
and Ren (2011) identified factors affecting results of the soil water data
assimilation with EnKF, including the initial estimate selection, the
ensemble size, the observation error and the model error, the assim-
ilation interval, the water regime, and the variability of the estimated
parameters. Other factors of DA performance are model simulation time
step, the number of parameter for estimation (degree of freedom in
inverse modelling), and the quality of the assimilated data. The role of
these factors was researched by Li and Ren (2011) for DA from one-
directional flow and constant boundary condition experiments. The
effect of the initial values of parameters on their temporal evolution has
not been considered in the present study and it remains to be seen and
addressed in future studies how the errors in initial parameter values
manifest themselves in different climatic and soil conditions.

The objective of this work was to analyze the efficiency of the joint
soil water state – parameter estimation under contrasting climatic
conditions and soil types to infer soil hydraulic properties. Besides, the
study aims to improve knowledge about how long should be the ob-
servation period of time to be able to reproduce the field soil water
dynamics with the model.

2. Materials and methods

2.1. Water flow modelling

Water flow modelling was conducted with the HYDRUS-1D software
(Šimůnek et al., 2009) numerical solution. The variably saturated water
flow was modelled according to Richards equation (Richards, 1931):
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where θ is volumetric water content [L3·L−3]; t time [T]; z is the ver-
tical coordinate [L]; K(θ) is the soil unsaturated hydraulic conductivity
[L·T−1]; h is the soil water pressure head [L]; and S(h) is the sink term
that represents water uptake by plants [L3·L−3·T−1]. The hydraulic

properties were defined with the van Genuchten-Mualem constitutive
relationships (Mualem, 1976; van Genuchten, 1980):
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and θs the saturated water content [L3·L−3]; θr is the residual water
content [L3·L−3]; Ks is the saturated hydraulic conductivity [L·T−1];
and α [L−1], n [−], and l [−] are empirical coefficients that determine
the shape of the hydraulic functions. The value of l= 0.5 is commonly
assumed, based on Mualem (1976).

Atmospheric boundary conditions were defined on a daily basis.
Maximum computational time step was set to one day, but smaller
computational time steps occurred to assure convergence.

2.2. Data assimilation with EnKF

Data assimilation was conducted using the Ensemble Kalman Filter
method with a state augmentation approach. Assume the ensemble
consists of N models that predict s state variables (among them, m of
these variables are observed in the field) and the number of model
parameters to be updated are p. After each time step, values of s states
variables from the N models of the ensemble are collected in a matrix X
(s,N). The matrix Y(p,N) is the parameter ensemble and collects values
of p model parameters which are updated in each time step. In the state
augmentation approach, both state and parameter matrices are com-
bined into a single one, the augmented state matrix Z(p + s,N) being as
follows:

= ⎡
⎣

⎤
⎦

Z
Y
Xt

t

t (5)

In each updating time, a new augmented matrix is obtained as fol-
lows:

= + − ⋅+ −Z Z K D H X( )t t t t t (6)

where Z−t and Z+t are the prior and posterior augmented matrices at
time t, respectively and Kt is the gain Kalman matrix (p+ s,m) in time t.
Matrix Dt(m,N) is created adding to the observed values a white noise
based on the data variances and covariance of observed values; it stores
N different replicates of m soil moisture observations at time t. H(m,s) is
the observation matrix that relates observations and simulated states; if
observation and model states are equal, then H becomes the identity
matrix; when, as in the present study, observation and model states are
both volumetric water content but there are more model states than
observations, H becomes a rectangular matrix with 1 and 0, that ‘picks
up’ the model states used in the updating process.

The gain matrix relates the variability of modelling results and
variability in the data. It is computed on each updating time as:
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where CXX(s,s) is the covariance matrix of the state simulations; R(m,m)
is the covariance matrix of observed values; and CYX − XX(p + s,s) is the
covariance matrix tying the variability of the augmented states and the
states simulations. The complete covariance matrix, Ct(p+ s,p+ s), is
estimated from the ensemble (N units) of the augmented parameter-
state matrix Z(p + s,N), and it is defined as:
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where the CYY(p,p) refers to covariances between parameters; CXX to
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