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A B S T R A C T

Accurate digital soil maps of soil organic matter (SOM) are needed to evaluate soil fertility, to estimate stocks,
and for ecological and environment modeling. We used 5982 soil profiles collected during the second national
soil survey of China, along with 19 environment predictors, to derive a spatial model of SOM concentration in
the topsoil (0–20 cm layer). The environmental predictors relate to the soil forming factors, climate, vegetation,
relief and parent material. We developed the model using the Cubist machine-learning algorithm combined with
a non-parametric bootstrap to derive estimates of model uncertainty. We optimized the Cubist model using a 10-
fold cross-validation and the best model used 17 rules. The correlation coefficient between the observed and
predicted values was 0.65, and the root mean squared error was 0.28 g/kg. We then applied the model over
China and mapped the SOM distribution at a resolution of 90×90m. Our predictions show that there is more
SOM in the eastern Tibetan Plateau, northern Heilongjiang province, northeast Mongolia, and a small area of
Tianshan Mountain in Xinjiang. There is less SOM in the Loess Plateau and most of the desert areas in northwest
China. The average topsoil SOM content is 24.82 g/kg. The study provides a map that can be used for decision-
making and contribute towards a baseline assessment for inventory and monitoring. The map could also aid the
design of future soil surveys and help with the development of a SOM monitoring network in China.

1. Introduction

Soil organic matter (SOM) is an important component of soil that
helps to determine crop yield and carbon sequestration (Manlay et al.,
2007). It is a key property that affects soil quality and the assessment of
soil resources. The amount of carbon stored in soil is three times that in
the atmosphere (Post and Kwon, 2000), and thus, small losses of soil
carbon to the atmosphere can have a significant impact on the overall
emissions of greenhouse gases and the greenhouse effect (Raich and
Potter, 1995).

Soil in China, like elsewhere, is subject to complex soil forming
environments, with persistent soil erosion and degradation, and long-
term intensive farming. As a consequence, the spatial distribution of
soil properties is very heterogeneous and existing soil property maps
have considerable uncertainty. There is a growing demand for fine-re-
solution soil property maps for applications in environmental modeling
and monitoring. Traditional polygon-based soil maps are less useful for
these purposes because they do not adequately characterize the spatial
variation of continuous soil properties. For instance, there is a need for

precise spatially explicit estimates of SOM at the national scale for
providing baselines for monitoring and to inform national greenhouse
gas inventories (Viscarra Rossel et al., 2014).

Dokuchaev firstly developed a scientific classification of soils,
methods for soil mapping and established the foundation for the study
of both soil genesis and soil geography (Buol et al., 2011). Later Jenny
proposed the well-known State Factor Equation of soil, where soil is
described as a function of CLimate, Organisms, Relif, Parent material
and Time, referred to as CLORPT (Jenny, 1941). McBratney et al.
(2003) and Scull et al. (2003) reviewed methods for soil mapping which
they defined as a spatial soil information system using field and la-
boratory observational methods, coupled with spatial and non-spatial
soil inference systems. Lagacherie and McBratney (2007) formalized
the “SCORPAN” framework of McBratney et al. (2003) and in a col-
lection of manuscripts described “digital soil mapping”. Since then,
much of the work on soil mapping with linear regression, geostatistical
methods, and data mining methods have fallen under the “digital soil
mapping” umbrella (Adhikari et al., 2014; Chen et al., 2018; Grunwald,
2009; McBratney et al., 2003; Sun et al., 2012; Viscarra Rossel and
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Chen, 2011; Zhou et al., 2016).
In the last decade, much attention has been focused on soil carbon

storage at the national scale. In China, most researchers have used
classification statistics and interpolation methods to obtain average soil
organic carbon content, soil depth, and other information (Pan, 1999;
Wang et al., 2000; Wu et al., 2003; Xie, 2004; Yu et al., 2005). How-
ever, due to the inaccuracies of the input point data, the studies have
produced diverse results. Other studies have used statistical models to
map the spatial distribution of soil organic carbon in China, such as
multiple regression combined with high accuracy surface modeling
(HASM) and neural networks (Li et al., 2010; Q.Q. Li et al., 2013), and
land surface modeling (Shangguan et al., 2013). But the spatial re-
solution of these studies is relatively coarse (> 1×1 km). Large area,
country, continental and global scale mapping at a fine resolution is
now a major research emphasis that will allow for a better under-
standing of the soil resource and our environment (Arrouays et al.,
2014).

Our aim here was to use a machine-learning model with data from
the second national soil survey of China and covariates that represent
the environmental factors, to map the spatial distribution of topsoil
(0–20 cm) organic matter in China and its uncertainty at 90×90m
spatial resolution.

2. Materials and methods

2.1. Collection and processing of soil profile data

The study used a dataset of 5982 soil profiles derived from the
second national soil survey of China (SNSSC), which was undertaken in
the 1980s and is mainly recorded in the Soil Series of China (National
Soil Survey Office, 1993, 1994a, 1994b, 1995a, 1995b, 1996) and the
Soil Series of Provinces (National Soil Survey Office, 1998). The carbon
determination was carried out by rational wet combustion (Pan et al.,
2004). The soil data covers most geographical regions of China and is
the most detailed soil survey available at the national scale.

The soil profiles were sampled and analyzed by genetic horizons,
and thus the depth intervals for each soil profile are inconsistent. As
variation in SOM down a profile is usually continuous, we used equal-
area splines (Ponce-Hernandez et al., 1986; Bishop et al., 1999; Malone
et al., 2009) to harmonize the SOM content of the topsoil, which we
defined as the 0–20 cm depth layer. To fit the splines to the SOM values
in the profiles we tested different tuning parameter values, λ: 10, 1, 0.1,
0.01, 0.001, 0.0001, and 0.00001. We found that λ=0.01 produced
the best fits with the smallest root mean square error (RMSE). The
splines were fitted to a maximum depth of 1m, and we aggregated the
spline predictions of SOM over the 0–20 cm to represent topsoil. Fig. 1
displays SOM depth function curves for three random soil profiles under
different land uses.

The soil profiles from the SNSSC lack precise geographical regis-
tration and have no data on latitude and longitude. However, they do
have detailed sampling location information that can be accurate to the
villages, fields. To verify the spatial location accuracy of the digitized
soil profiles, we compared elevation, mean annual precipitation, and
mean annual temperature (below) recorded in each soil profile with
data extracted from a high-resolution digital elevation model (DEM)
and digital climate map using linear regression analysis. Coefficients of
determination (R2) for both elevation and temperature were larger than
0.90, and it was 0.80 for precipitation (Fig. 2). These results confirmed
that the spatial accuracy of the digitized soil profiles was adequate for
our study. The spatial distribution of the profiles is shown in Fig. 3.

Statistical analysis of the dataset showed that the distribution of
SOM was skewed, with a mean of 24.82 g/kg, maximum of 560.1 g/kg
for a peat soil type, found in Ganzi in Sichuan Province, minimum of
0.6 g/kg for a clay soil type found in Gaolan in Gansu Province. SOM of
topsoil showed strong spatial variation, with a coefficient of variation
(CV) of 140%, which is mainly attributed to diverse soil types, land

uses, ecosystems, etc., at the national scale. To ensure the data is nor-
mally distributed, the SOM data was log-transformed prior to modeling
with logs to the base 10.

2.2. Environmental covariates

Following soil formation theory, a number of environmental cov-
ariates were chosen for our modeling. They include covariates that
represent terrain, climate, biota, geology, and human activities
(Table 1). Terrain information was derived from the 90-m shuttle radar
topographic mission (STRM) DEM. All terrain attributes, including
elevation, slope, aspect, curvature, slope length (LS), slope steepness,
mass balance index (MBI), terrain ruggedness index (TRI), topographic
wetness index (TWI), and multiresolution index of valley bottom flat-
ness (MrVBF) were derived from the DEM with the System for Auto-
mated Geoscientific Analyses (SAGA) geographic information system
(GIS) (http://www.saga-gis.org).

Data on daytime land surface temperature (LST_D), nighttime land
surface temperature (LST_N), normalized difference vegetation index
(NDVI), evapotranspiration (ET), and net primary productivity (NPP)
were derived from the Moderate Resolution Imaging Spectroradiometer
(MODIS) (Justice et al., 1998). The resolution of different data is shown
in Table 1.

Monthly precipitation products were obtained from the Tropical
Rainfall Measuring Mission (TRMM), which measures tropical and
subtropical precipitation (http://trmm.gsfc.nasa.gov/data_dir/data.
html).These data were at a coarse resolution (0.25° resolution)
(Huffman et al., 2007) and so we downscaled it using a geographically
weighted regression (Ma et al., 2017) to derive 90-m resolution mean
annual precipitation that we could use here.

Daily air temperature data for the period 1951–2014 from 754 base
meteorological observation stations distributed throughout mainland
China were used to calculate annual mean temperature (http://cdc.
nmic.cn/home.do). Mean annual temperature maps were produced at
90-m resolution using a regression-kriging approach with elevation,
latitude, and longitude as the auxiliary variables.

Annual mean solar radiation data (1950–1980) were derived from
the National Earth System Science Data Sharing Infrastructure (http://
www.geodata.cn). Land use and land cover data were obtained from the
Resource and Environment Data Center of the Chinese Academy of
Sciences (http://www.resdc.cn/).

These environmental covariates (LST_D, LST_N, ET, NDVI, NPP and
Solar Radiation) with resolution coarser than 90m were resampled to
90-m using bilinear method in ArcGIS 10.0.

2.3. Digital soil mapping

2.3.1. Modeling
The sites recorded covariates (precipitation, temperature, and ele-

vation) as well as other environmental covariates at the sampling lo-
cations are easy to obtain by overlaying the sampling locations with the
covariates maps and can be used as predictors from which to predict
soil properties such as SOM. We took advantage of this by setting up a
model in the form of a decision tree at the sites for which we had data
and then using the model to predict SOM elsewhere. Decision trees have
become one of the most commonly used data mining algorithms and are
ideally suited for dealing with complex nonlinear relationships and
missing values (Quinlan, 1992).

We used the algorithm that is implemented in the ‘cubist’ library
(Kuhn et al., 2014) in the R software (R Core Team, 2013). Cubist uses
conditional functions to build rules that partition the data into regions
that are similarly defined by the characteristics of the predictor vari-
ables. If the condition is true, then an ordinary least-squares linear
model predicts the response. If the condition is false, then the rule
defines the next node in the tree. The sequence if, then, else is repeated.
The result is that the regression equations, although general in form, are
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