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A B S T R A C T

Due to the spatial variability of soil resources in rapidly changing landscapes, such as rubber expansion areas in
mountainous South East Asia, landscape based soil organic carbon (SOC) stock assessments need new approaches
to obtain cost effective high-resolution soil maps. 3D modelling presents the opportunity to model changes of soil
properties with soil depth and in space in one single model. While most 3D models make use of spatial auto-
correlation to create soil maps, it might be feasible for upscaling to neglect the spatial autocorrelation and only
model autocorrelation within the soil profiles. We propose a “mixed model over continuous depth” (MMCD),
which uses a linear and quadratic term to model changes of soil properties with depth and predicts the spatial
distribution of soil properties at the landscape level. As the study area of 43 km2 in South West China was subject
to multiple constraints such as sparse road networks, steep terrain, and poor infrastructure, we applied the cost-
constrained conditioned Latin hypercube sampling (CCLHS) scheme for soil sampling at 120 locations to a depth
of 1m. The MMCD provides information on the most important drivers of selected soil properties, and their
relative importance. In this study, SOC was strongly linked to an interaction of elevation with mean horizon
depth (p < 0.001) and to the land use type (p < 0.001). An iterative leave-one-third-out evaluation was
performed to compare the MMCD to several established 2D and 3D mapping approaches. The MMCD proofed to
be as powerful as these established techniques, with an overall modelling efficiency (EF) of 0.72. All tested
models had a strong decrease of accuracy with depth, from an EF of about 0.8 in the topsoil to 0.2 at 0.8 to 1m
subsoil depth. The MMCD was further used to model highly unbalanced SOC density data with 120 independent
topsoil observations and only 11 locations with subsoil observations (EF of 0.75), where the computed prediction
intervals (95%) accurately covered the range of legacy measurements. Our approach allowed upscaling of SOC
density predictions to the surrounding larger nature reserve of 270 km2. The resulting MMCD and 3D maps
revealed that on average, 15 and 10% of SOC stocks are expected in the 0.6 to 0.8 m and 0.8 to 1m soil depth
intervals, respectively. The combination of CCLHS and MMCD is particularly suitable for mountainous sub-
tropical areas with poor road networks. However, this approach requires a strong relationship of the soil
property of interest with explanatory environmental covariates, as it does not consider spatial autocorrelation for
soil mapping. The advantage of this restriction is that it is easy to apply to highly unbalanced datasets and easy
to upscale, given that the environmental covariates in the surrounding area are similar to the calibration area.

1. Introduction

Due to the high importance of soil organic carbon (SOC) for the
global carbon cycle (Zeng et al., 2004) and soil fertility (Gregorich
et al., 1994; Shukla et al., 2006), there is a need for new approaches

that quantify soil organic carbon stocks with high-resolution maps, also
considering deeper soil horizons (Minasny et al., 2013). This is espe-
cially the case because SOC stocks greatly vary within landscapes
(Dieleman et al., 2013), between different cropping systems (Gauder
et al., 2016; Hellebrand et al., 2010), and amongst different land uses
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(Guo and Gifford, 2002). Soil sampling at the landscape level for digital
soil mapping (DSM) is often costly, and site access difficulties as well as
hazards can be major issues (e.g. Kidd et al., 2015), especially in
mountainous areas. Virtually all sampling design methods fall some-
where in between the two extremes of optimizing the sampling either
towards geographic space, such as grid sampling, or the virtual hy-
perspace of environmental covariates, which are assumed to be corre-
lated with the soil properties of interest. If upscaling is wanted, the
good distribution of sampling points within environmental covariates is
of high priority, because upscaling is especially sensitive to errors
(Cambule et al., 2013). Conditioned Latin hypercube sampling
(Minasny and McBratney, 2006), one of the most widely used approach
of covariate hyperspace methods, has been criticized as being inflexible
in field sampling (Kidd et al., 2015) due to a lack of alternative sam-
pling points, given inaccessibility. As mountainous landscapes with
their steep slopes and poor road networks represent areas that are
especially difficult to sample, sampling schemes which optimize feasi-
bility are invaluable. The cost-constrained conditioned Latin hypercube
sampling (CCLHS) (Roudier et al., 2012), which builds on the method of
Minasny and McBratney (2006), is one of the most suitable methods. In
conditioned Latin hypercube sampling without cost function, a user-
predefined number of sampling points is distributed within the feature
space of environmental covariates, using simulated annealing (Minasny
and McBratney, 2006). An objective function, consisting of three
weighted terms, assesses how well the marginal distribution of ran-
domly drawn sampling points represents the marginal distribution of all
possible sampling points for: (1) continuous covariates, (2) categorical
covariates, and (3) the correlation of covariates. For a defined number
of iterations, worst fitting sampling points are randomly replaced by
alternative points and then kept if they reduce the objective function.
The CCLHS adds a cost term to the objective function, which reduces
the effort of reaching sampling points in addition to optimizing within
the marginal distribution of environmental covariates. This approach
was found suitable for areas difficult to access (Silva et al., 2014); it also
represents a feasible design to implement upscaling exercises.

The choice of the model to create the maps should complement the
selected sampling approach and match the characteristics of the study
area. A selection of methods is available, such as geostatistical kriging
and cokriging (McBratney and Webster, 1983), linear and nonlinear
regression models, decision trees such as Random Forest and combined
approaches such as regression kriging (Odeh et al., 1995), kriging with
external drift (Goovaerts, 1997), or Cubist (RuleQuest Research, 2016).
Because purely geostatistical approaches are of limited use for up-
scaling, a model based on environmental covariates might be prefer-
able, especially if it performs equally well as geostatistical models in the
core area.

A downside of many common DSM techniques, including regres-
sion-based models, is an individual modelling of different depth inter-
vals (e.g. the depth intervals proposed by GlobalSoilMap.net; Arrouays
et al., 2014), although some new models do not require this step any-
more. Pedogenetic horizons in this case have to be normalized to depth
intervals (mostly with the boundaries 0, 5, 15, 30, 60, and 100 cm
depth) by an equal-area spline function (Bishop et al., 1999), which can
severely bias the modelling dataset for profiles with anomalies in dis-
tributions (Dorji et al., 2014), for example when buried subsoil horizons
with higher SOC contents are present. The individual modelling of
depth intervals also neglects any autocorrelations of horizons from the
same profile. It therefore is desirable to maintain the pedogenetic
horizon-based data structure in DSM and to include the change of soil
properties with depth in modelling. Some recent approaches have done
this, such as Orton et al. (2016) and Brus et al. (2016), combining non-
stationary sum-metric variance modelling with linear interaction
models to fit a 3D autocorrelation structure. However, while both these
approaches perform well to create maps within a study area, their
spatial autocorrelation lacks data when upscaling.

For upscaling purposes, we therefore propose to make use of mixed

models and directly fit them to pedogenetic horizon data. This simple
approach neglects spatial autocorrelation but models the autocorrela-
tion of soil properties within profiles, by adding random intercepts and
deviations of the depth effects at each sampling point. This improves
the estimation of soil properties change with depth. To create such a
model, we made use of mixed-effect models including random effects
(Laird and Ware, 1982), more commonly used in design experiments
(Piepho et al., 2004) than in DSM. In this “mixed model over con-
tinuous depth” (MMCD), interactions of environmental covariates with
depth and depth2 allow to model the change of soil properties with
profile depth as well as the landscape with one single model.

Because no data-demanding sum-metric autocorrelation needs to be
modelled, the MMCD should also be able to model situations where
significantly more data are available for the topsoil than for the subsoil,
but the subsoil shows less variation, as is the case for bulk or SOC
density. The MMCD should well complement the CCLHS, especially in
upscaling, since its calibration depends on a good distribution of sam-
pling points within environmental covariates, which is the main idea
behind all Latin hypercube sampling schemes.

In this context, we hypothesized that (i) the combination of MMCD
and CCLHS is a suitable DSM approach for heterogeneous mountainous
areas, and an improvement over depth interval-based models. If strong
explanatory covariates exist, (ii) it should perform equally well as other
recent 3D DSM approaches and in that case, the MMCD can be upscaled
to the surrounding area. As several soil properties, such as bulk and
SOC density, are usually most variable in the topsoil, we furthermore
hypothesized that (iii) these soil properties can be effectively modelled
and upscaled with a MMCD, combining abundant topsoil bulk density
measurements with sparsely sampled subsoil measurements.

Within this study, we evaluated whether it is possible to create
detailed estimations of SOC concentrations and densities at the land-
scape level and to scale these up from our 43 km2 study area in the
subtropical mountainous Yunnan to the surrounding nature reserve of
267 km2. The main objective of this study was therefore to test the
combination of the sampling scheme (CCLHS) with the interpolation
model (MMCD) and to compare it to established DSM techniques, as
well as to create and evaluate high-resolution estimates of SOC con-
centrations and densities at the landscape level. Because CCLHS was
used to optimize sampling point distribution, digitally available en-
vironmental covariates, such as elevation or land use maps, were the
key components used to develop the sampling design and to create
digital soil property maps.

2. Materials and methods

2.1. Study area

Our study area is part of the Naban River Watershed National
Nature Reserve in the prefecture Xishuangbanna (hereafter referred to
as the “Naban Reserve”), Southwest China, which is subject of the Sino-
German research project “Sustainable Rubber Cultivation in the
Mekong Region” (SURUMER, https://surumer.uni-hohenheim.de/).
Three central watersheds were selected as study sites because they re-
presented the full range of land uses and elevation gradients and con-
tained the most important research plots of the SURUMER project. With
an area of 43 km2, they cover 16% of the nature reserve (Fig. 1).

Cambisols, Ferralsols, Acrisols, and Hydragic Stagnic Anthrosols
(World Reference Base of Soil Resources - WRB 2006) have been
identified as the main soil types in a prior study (Wolff and Zhang,
2010), while during this study, also Umbrisols and Nitisols, with the
WRB 2014 (IUSS Working Group, 2014), were identified (data not
published). Granite was the dominant parent material in the western
part of the nature reserve and phyllite in the eastern part (Wolff and
Zhang, 2010), but due to Chinese confidentiality politics, more detailed
information or maps of parent material could not be obtained. The
study area covers diverse environmental conditions, with elevations
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