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ARTICLE INFO ABSTRACT

Reliability of flood stage and inundation extent predictions are affected by the performance of a hydraulic
model. However, uncertainties at all times exist in the model setup process. Therefore, prediction from a single
hydraulic model implementation may be subject to huge uncertainty. Bayesian model averaging (BMA) is ap-
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Bayesian model averaging develop a robust deterministic water stage prediction as well as the prediction distribution. The BMA approach is
Uncertainty tested over the Black River watershed in Missouri and Arkansas based on water stage predictions from 81
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LISFLOOD-FP model configurations that integrate four sources of uncertainty including channel shape, channel
width, channel roughness and flow input. Model ensemble simulation outputs are trained with observed water
stage data during one flood event to obtain the weight and variance for each model member, and BMA prediction
ability is then validated for another flood event. The results indicate that the BMA approach is able to provide
consistently good and reliable deterministic flood stage prediction across the basin, though it does not always
outperform the best model in the ensemble. The BMA water stage prediction has better performance than the
ensemble mean prediction. Additionally, high-chance flood inundation extent derived from a BMA probabilistic
flood map is more accurate than the probabilistic flood inundation extent based on the equal model weights in

the Black River watershed.

1. Introduction

With the increasing threat of frequently occurring intense storms,
hydrodynamic models are expected to play a bigger role in under-
standing and predicting the floods and their corresponding extents.
There are several ongoing efforts to simulate floods at multiple spatial
scales ranging from single reach to continental scale stream networks
(Cook and Merwade, 2009; de Paiva et al., 2013; Horritt and Bates,
2002; Knebl et al., 2005; Schumann et al., 2013). Additionally, all these
efforts use different approaches ranging from simplistic digital eleva-
tion model (DEM) based models such as HAND (Nobre et al., 2011) to
more sophisticated 1D or 2D hydraulic models such as HEC-RAS and
LISFLOOD-FP (Pappenberger et al., 2005a; Wood et al., 2016). All ap-
proaches require two primary inputs including the topography to con-
struct the river geometry and flow magnitude to simulate the hy-
draulics. Simulation of hydraulics require adjustment of model
parameters, which is primarily the channel roughness specified in the
form of Manning’s n. Depending on the flood modeling approach, the
final result is affected by several sources of uncertainty including the
model structure, flow magnitude, topography and model parameters,
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among others (Bermtdez et al., 2017; Cook and Merwade, 2009;
Dottori et al., 2013; Mukolwe et al., 2016; Teng et al., 2017).

The uncertainty in flood inundation modeling can be categorized
into three major types: model structure, model parameter and input
forcing. Model structure broadly includes the type of the model, one-
dimensional or two-dimensional, type and form of numerical equations,
and the assumptions in the model. For a specific model, structural un-
certainty could also include how the river geometry, including the
channel cross-sectional shape and planform, is extracted and re-
presented in the model (Liu et al., 2018; Pappenberger et al., 2006;
Teng et al., 2017). For instance, commonly used DEMs do not have
information on channel bed, and thus assuming a shape for the channel
bed could add substantial uncertainty to the model output. Most hy-
draulic models are calibrated for different flows using channel rough-
ness parameter, and thus when these models are used to simulate flows
that are outside the range used during calibration, the calibrated
channel roughness value can add uncertainty to the model results. This
is typically the case when hydraulic models are used for simulating 100-
year or higher return period design flows as observed data for such
flows may not exist. Finally, observed or simulated input forcing data
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such as streamflows and water stage used in hydraulic models also add
significant uncertainty to the simulation results. (Beven and Hall, 2014;
Demeritt et al., 2007; Merwade et al., 2008; Pappenberger et al.,
2005b). Therefore, reliance on a single hydraulic model implementa-
tion for flood prediction typically increases the statistical bias of the
forecast.

One way to handle model uncertainties is by using a multi-model
combination approach, in which results are extracted from a group of
existing model implementations to provide a robust prediction based on
the model prediction ensemble. Multi-model combining for ensemble
predictions is widely used in hydrology and climate forecast using a
variety of methods, including SMA (simple model average), WMA
(weighted model average), MMSE (multi-model super-ensemble) and
M3SE (a variant of MMSE), among others (Ajami et al., 2006;
Chowdhury and Sharma, 2009; Hamill, 2001; Liu et al., 2014; Najafi
and Moradkhani, 2015a; Najafi and Moradkhani, 2015b; Shamseldin
et al.,, 1997; Xiong et al., 2001). Additionally, the performance of
probabilistic ensemble merging techniques have been evaluated and
compared with the deterministic model predictions for climate model
and streamflow predictions (Najafi and Moradkhani, 2015a; Najafi and
Moradkhani, 2015b). In recent years, the Bayesian model averaging
(BMA) technique (Merlise, 1999; Raftery et al., 2005) has been used
widely in surface water hydrology (Ajami et al., 2007; Duan et al.,
2007; Jiang et al., 2017; Rings et al., 2012; Zhang et al., 2009),
groundwater hydrology (Neuman, 2003), climatology (Zhang et al.,
2016), biology (Yeung et al., 2005), ecology (Wintle et al., 2003),
public health (Morales et al., 2006), and economics (Fernandez et al.,
2001). The rationale behind the BMA method lies in the fact that some
models are superior to other models and each model should not be
treated exactly the same. The BMA approach evaluates model im-
plementations and assigns each of them a weight and variance based on
the model performance in the training period. The advantage of this
approach over other model combing methods is that BMA not only
provides a deterministic model weighted average prediction of the in-
terested variable, but also produces the forecast distribution which
reflects the uncertainty associated with the deterministic prediction
(Raftery et al., 1997; Rings et al., 2012).

Considering the wide applicability of BMA in other areas of hy-
drology, its application in flood inundation modeling can help address
the issue of accounting and presenting model structure, parameter, and
input forcing uncertainty. Although the BMA approach is usually being
used to account only for model structure uncertainty, there do exist
previous studies in other fields to incorporate forcing/boundary con-
dition and parameter uncertainty using the BMA method (Chitsazan
and Tsai, 2015; Yen, 2012). Accordingly, the objectives of this study are
to: (1) determine whether BMA can provide accurate and reliable de-
terministic flood predictions for a stream network by considering var-
ious uncertainty sources; (2) compare the performance of BMA pre-
diction with predictions from model members and ensemble mean; and
(3) quantify uncertainty associated with the BMA deterministic pre-
diction. The above objectives are accomplished by applying a large
scale hydraulic model for the Black River watershed that is located in
Arkansas and Missouri in the U.S.

We acknowledge that uncertainty quantification is not a new topic
in flood inundation mapping because several past studies have ad-
dressed uncertainties related to parameter, input data and boundary
conditions (Aronica et al, 2002; Jung and Merwade, 2011;
Pappenberger et al., 2005a, 2013; Tiwari and Chatterjee, 2010; Yu
et al., 2015). However, the results from these studies are somewhat
limited due to the use of isolated flood events on a single reach in the
analysis. With the growing need to simulate the river hydrodynamics
over an entire stream network at basin to continental scales (Huang and
Hattermann, 2018; Jafarzadegan and Merwade, 2017; Merwade et al.,
2018; Schumann et al., 2013; Wilson et al., 2007), it is expected that
multiple sources of uncertainties will play different roles in different
streams to contribute to the overall uncertainty in the final result.
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Hydrodynamic modeling in a stream network will involve a mix of large
and small reaches. Many large reaches could be well described in the
model in terms of their cross-sectional shape, roughness characteriza-
tion and channel width, but the same may not apply to many low order
contributing streams. As a result, many low order streams may be af-
fected by structural, parameter and input forcing uncertainties, but the
large streams may only be affected by input forcing uncertainties. Thus,
there is a need to understand the cumulative effect of different un-
certainty sources in flood inundation modeling over a larger stream
network. This study attempts to address this need by using the BMA
methodology. Once the cumulative effect of all uncertainties is ac-
counted, the hierarchical BMA can then be used to understand the re-
lative impact of individual uncertainties.

2. Study area and data

The 20,000 km? Black River watershed located across Arkansas and
Missouri states in the U.S. is selected for this study. Historical records
indicate that this region has experienced numerous flood events in the
past including the recent one that occurred in May 2017. The recorded
water level data for the 2017 event are available from the United States
Geological Survey (USGS) gauges (Fig. 1 and Table 1), and are used in
validating the results from this study. Additionally, the Black River
watershed has four major rivers including Black river, Current River,
Eleven Point River and Spring River, which drain towards the wa-
tershed outlet in Arkansas. These four major rivers provide distinct
topographical, geomorphic settings as well as varying reach lengths and
sinuosity, thus making Black River watershed a good test bed for this
study. The daily streamflow data (input to the hydraulic model) and
stage data (for validation) used in this study are unaffected by any
major hydraulic structures, and are thus considered natural. The to-
pography and land use dataset are obtained in the form of national
elevation dataset 90 m DEM (http://ned.usgs.gov) and NLCD 2011 land
use data (http://www.mrlc.gov/nled2011.php), respectively. A 90 m
DEM instead of 30 m or finer resolution DEM is selected for this study to
strike a balance between predication accuracy and the computational
demand for a large number of simulations needed for uncertainty
analysis. Although the prediction accuracy might be affected by using
the 90 m DEM, many large scale models use 90 m or coarser DEM for
flood modeling as well (Neal et al., 2012; Schumann et al., 2013). In-
undation extents for selected storms, which will be used for validation
of results, are derived by classifying Landsat images from the USGS
earth explorer website (http://earthexplorer.usgs.gov/). The Landsat
images are classified into water and non-water area with a supervised
classification technique using the ArcGIS classification tools. The clas-
sification is formed using the following three steps: (i) train the tool by
delineating water and non-water areas; (2) use the maximum likelihood
classification approach to classify the entire Landsat image based on
information obtained from the training areas; and (iii) extract the
“water” area from the classified image and treat it as observed in-
undation extent around the streams.

3. Methodology
3.1. Hydraulic modeling

Many one-, two- or three-dimensional models exist for conducting
flood simulations. One-dimensional (1D) models use discrete cross-
sections to describe the rivers and assumes that water moves only
longitudinally along the direction of river; whereas two-dimensional
models (2D) use continuous mesh or raster grid to define the channels
and assumes water moves both longitudinally and laterally; and a three-
dimensional (3D) model adds the vertical movement to the 2D flow.
One of the most commonly used models in the U.S. is the Hydrological
Engineering Center’s River Analysis System (HEC-RAS) (USACE, 2015)
which includes the classic 1D and the recently developed (2D) versions.
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