
Accepted Manuscript

Research papers

Tree pits to help mitigate runoff in dense urban areas

Vaughn Grey, Stephen J Livesley, Tim D Fletcher, Christopher Szota

PII:	S0022-1694(18)30634-6
DOI:	https://doi.org/10.1016/j.jhydrol.2018.08.038
Reference:	HYDROL 23052
To appear in:	Journal of Hydrology
Received Date:	15 June 2018
Revised Date:	16 August 2018
Accepted Date:	17 August 2018

Please cite this article as: Grey, V., Livesley, S.J., Fletcher, T.D., Szota, C., Tree pits to help mitigate runoff in dense urban areas, *Journal of Hydrology* (2018), doi: https://doi.org/10.1016/j.jhydrol.2018.08.038

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

1	Tree pits to help mitigate runoff in dense urban areas
2	
3	Vaughn Grey, Stephen J Livesley, Tim D Fletcher and Christopher Szota
4	
5	School of Ecosystem and Forest Sciences, Faculty of Science, The University of Melbourne, 500
6	Yarra Boulevard, Richmond, Victoria 3121, Australia
7	
8	Corresponding author: Vaughn Grey
9	Email: vgrey@moreland.vic.gov.au
10	School of Ecosystem and Forest Sciences, Faculty of Science, The University of Melbourne, 500
11	Yarra Boulevard, Richmond, Victoria 3121, Australia.
12	
13	Abstract
14	Tree pits are attractive stormwater control measures (SCMs) for implementation in dense urban
15	areas because of their small footprint, their potentially low cost and the co-benefits they may bring
16	through improved street tree growth. While they provide street trees with passive irrigation, it
17	remains to be determined if tree pits may achieve meaningful reductions in stormwater runoff. We
18	undertook a streetscape experiment to quantify runoff retention of tree pits in a heavy clay soil
19	with low-rates of exfiltration. We calibrated and validated a water balance model using the field
20	experiment data to identify tree pit characteristics driving runoff retention performance. We then
21	applied the model to different implementation scenarios to ascertain how useful these tree pits may
22	be at reducing runoff to return a more natural flow regime in dense urban areas. The main drivers
23	of runoff retention were identified as exfiltration rates from the tree pits and the connected

24 impervious catchment size. Our results show that it is possible, even in dense urban streetscapes

Download English Version:

https://daneshyari.com/en/article/8894449

Download Persian Version:

https://daneshyari.com/article/8894449

Daneshyari.com