Direct products of groups and regular orbits

Thomas Michael Keller ${ }^{\text {a }}$, Alexandre Turull ${ }^{\text {b,* }}$, Thomas R. Wolf ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Mathematics, Texas State University, 601 University Drive,
San Marcos, TX 78666, USA
b Department of Mathematics, University of Florida, Gainesville, FL 32611, USA
c Department of Mathematics, Ohio University, Athens, OH 45701, USA

A R T I C L E I N F O

Article history:

Received 15 June 2017
Available online 27 October 2017
Communicated by Martin Liebeck

MSC:

20C20

Keywords:
Regular orbits
Finite groups
Representations

Abstract

We prove the following result. Let p be a prime, and let G be a finite p-solvable group that is a direct product of two noncyclic subgroups of coprime order, and let V be some faithful irreducible module for G over some field in characteristic p. Then G has a regular orbit, that is, there exists some $v \in V$ such that $\mathrm{C}_{G}(v)=1$. © 2017 Elsevier Inc. All rights reserved.

1. Introduction

It is well known that the existence of regular orbits has important consequences for the structure of finite groups. The following are examples among many others $[11,12,8$, 14]. Let G be a finite group acting faithfully on a module V. A regular orbit of G on V is any G-orbit in V of size $|G|$. Hence $v \in V$ is in a regular orbit if and only if $\mathrm{C}_{G}(v)=1$. The study of conditions on G and V that guarantee the existence of at least one regular orbit has intensively been pursued.

[^0]Important and useful results have been obtained when the module V is taken to be of a particular form. For example, work of Wolf [13], Seress [9] and Dolfi [3] concern modules V that are multiples of a module. Work of Yang $[15,16]$ concerns the case when V is irreducible and quasi-primitive.

For the purpose of this introduction, we focus on the case when G is solvable and V is irreducible. If G is abelian, then V always has regular orbits. When G is nilpotent, this is no longer the case. The issue of determining conditions on G and V that will guarantee the existence of regular orbits was studied by Hargraves [6]. (See also Theorem 3.1 below.) The case when G is supersolvable was studied by Turull [10]. Results on more general kinds of solvable groups have also been obtained, for example [7].

It is a consequence of Hargraves' Theorem 3.1 that if G is nilpotent and two or more Sylow subgroups of G are not cyclic then G has a regular orbit on V. We generalize this result to arbitrary finite p-solvable groups, to say that if G is p-solvable and the direct product of two non-cyclic subgroups of coprime order, then G will have a regular orbit on V.

The following is our main theorem. (See Theorem 2.3 below.)

Theorem. Suppose that V is a faithful irreducible $K G$-module where K is a field of characteristic $p \geq 0$, and G is a finite group that is the direct product $G=G_{1} \times G_{2}$ for non-cyclic subgroups G_{1} and G_{2} of coprime order. If $p>0$, assume that G is p-solvable. Then G has a regular orbit on V.

This theorem is the best possible in the following sense. We can not simply replace the condition that G_{1} and G_{2} be non-cyclic by the condition that G_{1} and G_{2} be non-trivial. And, we can not remove the condition that G_{1} and G_{2} be of coprime order. These facts are proved in Section 3 below.

We do not know whether the hypothesis that G be p-solvable when $p>0$ is needed in our main theorem.

2. The main result

Let G be a finite group acting faithfully on a $K G$-module V, where K is a field. A base for G on V is a subset S of V such that the identity is the only element of G that fixes every element of S, that is $\mathrm{C}_{G}(S)=1$. Clearly, any basis of V as a vector space is a base for G. We denote by $b(G)$ the smallest cardinality of a base of G on V. We note that $b(G) \leq \operatorname{dim}_{K}(V)$, and that, if S is a base for G with cardinality $b(G)$, then S is linearly independent over K. In addition, G has a regular orbit on V if and only if $b(G) \leq 1$.

Recent deep results provide us very strong bounds on the size of bases. They allow us to state the following.

https://daneshyari.com/en/article/8896522

Download Persian Version:
https://daneshyari.com/article/8896522

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: keller@txstate.edu (T.M. Keller), turull@ufl.edu (A. Turull), wolf@ohio.edu (T.R. Wolf).

