On the class number divisibility of pairs of imaginary quadratic fields

Yoshichika Iizuka
Department of Mathematics, Gakushuin University, Mejiro, Toshima-ku, Tokyo 171-8588, Japan

Article history:

Received 16 December 2016
Received in revised form 11 May 2017
Accepted 18 August 2017
Available online xxxx
Communicated by the Principal
Editors

MSC:

11R29
11R11
Keywords:
Class numbers
Quadratic fields

A B S T R A C T

We construct an infinite family of pairs of imaginary quadratic fields $\mathbb{Q}(\sqrt{D})$ and $\mathbb{Q}(\sqrt{D+1})$ with $D \in \mathbb{Z}$ whose class numbers are both divisible by 3 .
© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Let l be the prime 3,5 , or 7 and let m and n integers with $m \neq 0$. Iizuka, Konomi, and Nakano [3] constructed an infinite family of pairs of quadratic fields $\mathbb{Q}(\sqrt{D})$ and $\mathbb{Q}(\sqrt{m D+n})$ with $D \in \mathbb{Q}$ whose class numbers are both divisible by l. For the case $n=0$, it is easy to see that D can be retaken in \mathbb{Z}. See Komatsu [5] and Iizuka, Konomi, and Nakano [2] (see also Komatsu [6] for a recent related result). Whereas, when $n \neq 0$,

[^0]https://doi.org/10.1016/j.jnt.2017.08.013
0022-314X /@ 2017 Elsevier Inc. All rights reserved.
it is essential to distinguish whether D is an integer or not. The aim of the present paper is to show that D can be taken to be an integer in the above result for pairs of imaginary quadratic fields when $l=3$ and $m=n=1$. Our main result is the following theorem:

Theorem 1. There is an infinite family of pairs of imaginary quadratic fields $\mathbb{Q}(\sqrt{D})$ and $\mathbb{Q}(\sqrt{D+1})$ with $D \in \mathbb{Z}$ whose class numbers are both divisible by 3 .

The author would like to thank S. Nakano and Y. Konomi for valuable discussions.

2. Proof of Theorem 1

Let $f(X) \in \mathbb{Z}[X]$ be an irreducible cubic polynomial and M the splitting field of $f(X)$ over \mathbb{Q}. We denote by $D(f)$ the discriminant of $f(X)$. Suppose that $D(f)$ is not a square and put $k=\mathbb{Q}(\sqrt{D(f)})$. Then M / \mathbb{Q} is an S_{3}-extension, k is a quadratic field, and M / k is a cyclic extension of degree 3 . If M / k is unramified, the class number of k is divisible by 3 . A prime ideal of k above a prime number p is ramified in M if and only if p is totally ramified in the cubic field generated by a root of $f(X)$ (see, for example, Kishi and Miyake [4]).

For a prime number p and an integer n, we denote by $v_{p}(n)$ the greatest exponent m such that $p^{m} \mid n$. The following lemma follows immediately from Theorem 1 in Llorente and Nart [7]:

Lemma 1. Suppose that the cubic polynomial

$$
f(X)=X^{3}-a X-b, \quad a, b \in \mathbb{Z}
$$

is irreducible over \mathbb{Q} and that either $v_{q}(a)<2$ or $v_{q}(b)<3$ holds for every prime number q. Let M be the splitting field of $f(X)$ over \mathbb{Q}. We denote by $D(f)$ the discriminant of $f(X)$. Suppose that $D(f)$ is not a square and put $k=\mathbb{Q}(\sqrt{D(f)})$. Let p be a prime number and \mathfrak{p} a prime ideal of k above p.
(i) Case $p \neq 3$. The prime ideal \mathfrak{p} is unramified in M if and only if one of the following conditions holds:
(a) $v_{p}(a)=0$.
(b) $v_{p}(b)=0$.
(c) $1=v_{p}(a)<v_{p}(b)$.
(ii) Case $p=3$. If $3 \mid a$ and $3 \nmid b$, then \mathfrak{p} is unramified in M if and only if one of the following conditions holds:
(a) $a \equiv 0, b \equiv \pm 1(\bmod 9)$.
(b) $a \equiv 6, b \equiv \pm 4(\bmod 9)$.
(c) $a \equiv 3, b \equiv \pm 2(\bmod 27)$.
(d) $a \equiv 12, b \equiv \pm 11(\bmod 27)$.
(e) $a \equiv 21, b \equiv \pm 7(\bmod 27)$.

https://daneshyari.com/en/article/8897079

Download Persian Version:

https://daneshyari.com/article/8897079

Daneshyari.com

[^0]: E-mail address: iizuka@math.gakushuin.ac.jp.

