On the compositum of integral closures of valuation rings ${ }^{\text {N }}$

Anuj Jakhar, Sudesh K. Khanduja *, Neeraj Sangwan
Indian Institute of Science Education and Research (IISER), Mohali Sector-81, S. A. S. Nagar, 140306, Punjab, India

A R T I C L E I N F O

Article history:

Received 11 August 2017
Received in revised form 13
November 2017
Available online 2 January 2018
Communicated by V. Suresh

MSC:

11R29; 11R04; 12J10; 12J25

Abstract

It is well known that if K_{1}, K_{2} are algebraic number fields with coprime discriminants, then the composite ring $A_{K_{1}} A_{K_{2}}$ is integrally closed and K_{1}, K_{2} are linearly disjoint over the field of rationals, $A_{K_{i}}$ being the ring of algebraic integers of K_{i}. In an attempt to prove the converse of the above result, in this paper we prove that if K_{1}, K_{2} are finite separable extensions of a valued field (K, v) of arbitrary rank which are linearly disjoint over $K=K_{1} \cap K_{2}$ and if the integral closure S_{i} of the valuation ring R_{v} of v in K_{i} is a free R_{v}-module for $i=1,2$ with $S_{1} S_{2}$ integrally closed, then the discriminant of either S_{1} / R_{v} or of S_{2} / R_{v} is the unit ideal. We quickly deduce from this result that for algebraic number fields K_{1}, K_{2} linearly disjoint over $K=K_{1} \cap K_{2}$ for which $A_{K_{1}} A_{K_{2}}$ is integrally closed, the relative discriminants of K_{1} / K and K_{2} / K must be coprime.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

For an algebraic number field K, A_{K} will denote the ring of its algebraic integers. It is well known that if K_{1}, K_{2} are algebraic number fields with coprime discriminants, then the composite ring $A_{K_{1}} A_{K_{2}}$ is integrally closed and K_{1}, K_{2} are linearly disjoint over the field \mathbb{Q} of rational numbers (cf. [7, Theorem 4.26], [3, Exercise 4.5.12]). This gives rise to the following natural question:

If K_{1}, K_{2} are algebraic number fields linearly disjoint over \mathbb{Q} for which $A_{K_{1}} A_{K_{2}}$ is integrally closed, then is it true that the discriminants of K_{1} and K_{2} are coprime?

In 2017, we proved that the answer to the above question is in the affirmative when one of K_{1} or K_{2} is a quadratic field (see [5, Theorem 1.6]). In the present paper we prove that the answer to the above question is always "yes". In this direction, we prove a more general result which will be stated after introducing some notation.

[^0]Notation 1.A. Let R be an integral domain with quotient field K and S be the integral closure of R in a finite separable extension L of K. Assume that S is a free R-module of rank n. As usual the discriminant of S / R to be denoted by $d(S / R)$ is defined to be the ideal in R generated by the determinant of the $n \times n$ matrix $\left(\operatorname{Tr}_{L / K}\left(\beta_{i} \beta_{j}\right)\right)_{i j}$, where $\left\{\beta_{1}, \cdots, \beta_{n}\right\}$ is an R-basis of S and Tr is the trace map. As in [7, Proposition 2.9(ii)], it can be easily seen that for any other R-basis $\left\{\beta_{1}^{\prime}, \beta_{2}^{\prime}, \cdots \beta_{n}^{\prime}\right\}$ of S the determinants of the matrices $\left(\operatorname{Tr}_{L / K}\left(\beta_{i} \beta_{j}\right)\right)_{i j}$ and $\left(\operatorname{Tr}_{L / K}\left(\beta_{i}^{\prime} \beta_{j}^{\prime}\right)\right)_{i j}$ differ multiplicatively by a unit. So $d(S / R)$ is well defined.

In this paper, we prove
Theorem 1.1. Let (K, v) be a valued field of arbitrary rank with perfect residue field and K_{1}, K_{2} be finite separable extensions of K which are linearly disjoint over K. Let S_{1}, S_{2} denote the integral closures of the valuation ring R_{v} of v in K_{1}, K_{2} respectively. If S_{1}, S_{2} are free R_{v}-modules and $S_{1} S_{2}$ is integrally closed, then either $d\left(S_{1} / R_{v}\right)$ or $d\left(S_{2} / R_{v}\right)$ is the unit ideal.

The following corollary will be quickly deduced from the above theorem.

Corollary 1.2. Let K_{1}, K_{2} be algebraic number fields which are linearly disjoint over $K=K_{1} \cap K_{2}$ such that $A_{K_{1} K_{2}}=A_{K_{1}} A_{K_{2}}$. Then the relative discriminants of the extensions K_{1} / K and K_{2} / K are coprime.

For proving Theorem 1.1, we shall prove the following theorem as a preliminary result. It is of independent interest as well.

Theorem 1.3. Let $(K, v), K_{1}, K_{2}, S_{1}, S_{2}$ be as in Theorem 1.1 without the assumption that the residue field of v is perfect. Assume that S_{1}, S_{2} are free R_{v}-modules and $S_{1} S_{2}$ is integrally closed. If r, s, t denote respectively the number of prolongations of v to K_{1}, K_{2} and $K_{1} K_{2}$, then $t=r s$.

2. Preliminary results

In what follows for a valuation v of a field K, R_{v} will denote its valuation ring and M_{v} the maximal ideal of R_{v}. (K^{h}, v^{h}) will denote the henselization of (K, v) whose valuation ring will be denoted by R_{v}^{h}.

The following theorem is already known (see [4, Lemma 2.B, Theorem 2.3]). Its proof is omitted.
Theorem 2.A. Let (K, v) be a valued field of arbitrary rank with valuation ring R_{v} and $\left(K^{h}, v^{h}\right)$ be its henselization having valuation ring R_{v}^{h}. Let L be a finite separable extension of K and S be the integral closure of R_{v} in L. Let w_{1}, \cdots, w_{t} be all the prolongations of v to L. Assume that S is a free R_{v}-module. Then $R_{w_{i}}^{h}$ is a free R_{v}^{h}-module for $1 \leq i \leq t$. Moreover one can choose a suitable R_{v}^{h}-basis $\mathcal{B}_{i} \subseteq S$ of $R_{w_{i}}^{h}$ such that $(i) \cup_{i=1}^{t} \mathcal{B}_{i}$ is an R_{v}-basis of S; (ii) for every $B_{i j} \in \mathcal{B}_{i}$ and for each $k \neq i$, $w_{k}\left(B_{i j}\right) \geq v(a)>0$ for some a in K.

The proof of the following lemma is contained in the proof of Theorem 1.1 of [4]. For reader's convenience, we prove it here.

Lemma 2.B. Let $(K, v), R_{v}^{h}, L, S, w_{1}, \cdots, w_{t}$ and $R_{w_{i}}^{h}$ be as in Theorem 2.A. Assume that S is a free R_{v}-module. Then the R_{v}-bilinear map from $R_{v}^{h} \times S$ into $\prod_{i=1}^{t} R_{w_{i}}^{h}$ mapping (a, α) to ($a \alpha, a \alpha, \cdots, a \alpha$) for $a \in R_{v}^{h}, \alpha \in S$, gives rise to an R_{v}^{h}-module isomorphism Λ from $R_{v}^{h} \otimes_{R_{v}} S$ onto $\prod_{i=1}^{t} R_{w_{i}}^{h}$.

https://daneshyari.com/en/article/8897334

Download Persian Version:
https://daneshyari.com/article/8897334

Daneshyari.com

[^0]: th The financial support from IISER Mohali is gratefully acknowledged by the first and third authors. The second author is thankful to Indian National Science Academy for the fellowship.

 * Corresponding author.

 E-mail addresses: anujjakhar@iisermohali.ac.in (A. Jakhar), skhanduja@iisermohali.ac.in (S.K. Khanduja), neerajsan@iisermohali.ac.in (N. Sangwan).

