A lower bound for higher topological complexity of real projective space

Donald M. Davis
Department of Mathematics, Lehigh University, Bethlehem, PA 18015, USA

A R T I C L E I N F O

Article history:

Received 19 September 2017
Received in revised form 1 November 2017
Available online xxxx
Communicated by C.A. Weibel
MSC:
55M30; 68T40; 70B15

A B S T R A C T

We obtain an explicit formula for the best lower bound for the higher topological complexity, $\mathrm{TC}_{k}\left(R P^{n}\right)$, of real projective space implied by mod 2 cohomology.
© 2017 Elsevier B.V. All rights reserved.

1. Main theorem

In [2], Farber introduced the notion of topological complexity, $\mathrm{TC}(X)$, of a topological space X. This can be interpreted as one less than the minimal number of rules, called motion planning rules, required to tell how to move between any two points of $X .{ }^{1}$ This became central in the field of topological robotics when X is the space of configurations of a robot. This was generalized to higher topological complexity, $\mathrm{TC}_{k}(X)$, of a topological space X by Rudyak in [3]. This can be thought of as one less than the minimal number of rules required to tell how to move consecutively between any k specified points of X ([3, Remark 3.2.7]). In [1], the study of $\mathrm{TC}_{k}\left(P^{n}\right)$ was initiated, where P^{n} denotes real projective space. Using \mathbb{Z}_{2} coefficients for all cohomology groups, define the k th zero-divisor cup-length $\operatorname{zcl}_{k}(X)$ to be the maximal integer q such that there exist elements $y_{1}, \ldots, y_{q} \in \operatorname{ker}\left(\Delta^{*}: H^{*}(X)^{\otimes k} \rightarrow H^{*}(X)\right)$ with nonzero product; i.e., $y_{1} \cdots y_{q} \neq 0$. Here $\Delta: X \rightarrow X^{k}$ is the diagonal map. It is standard ([3, Proposition 3.4] or [1, Proposition 2.2]) that

$$
\mathrm{TC}_{k}(X) \geq \operatorname{zcl}_{k}(X)
$$

In [1, Lemma 5.2], it was shown that

$$
\operatorname{zcl}_{k}\left(P^{n}\right)=\max \left\{a_{1}+\cdots+a_{k-1}:\left(x_{1}+x_{k}\right)^{a_{1}} \cdots\left(x_{k-1}+x_{k}\right)^{a_{k-1}} \neq 0\right\}
$$

[^0]Table 1
Values of $\operatorname{zcl}_{k}(n)$.

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
$\operatorname{zcl}_{2}(n)$	1	3	3	7	7	7	7	15	15	15	15	15	15	15	15	31
$\operatorname{zcl}_{3}(n)$	2	6	6	12	14	14	14	24	26	30	30	30	30	30	30	48
$\operatorname{zcl}_{4}(n)$	3	8	9	16	19	21	21	32	35	40	41	45	45	45	45	64
$\operatorname{zcl}_{5}(n)$	4	10	12	20	24	28	28	40	44	50	52	60	60	60	60	80
$\operatorname{zcl}_{6}(n)$	5	12	15	24	29	35	35	48	53	60	63	72	75	75	75	96
$\operatorname{zcl}_{7}(n)$	6	14	18	28	34	42	42	56	62	70	74	84	90	90	90	112
$\operatorname{zcl}_{8}(n)$	7	16	21	32	39	48	49	64	71	80	85	96	103	105	105	128

in $\mathbb{Z}_{2}\left[x_{1}, \ldots, x_{k}\right] /\left(x_{1}^{n+1}, \ldots, x_{k}^{n+1}\right)$. Here $x_{i}=p_{i}^{*}(x)$, where $p_{i}:\left(P^{n}\right)^{k} \rightarrow P^{n}$ is projection onto the i th component, and x is the nonzero element of $H^{1}\left(P^{n}\right)$. Clearly $\left(x_{i}+x_{k}\right) \in \operatorname{ker}\left(\Delta^{*}\right)$. The goal is to find large nonzero products of powers of these classes.

Our main theorem, Theorem 1.2, gives an explicit formula for $\operatorname{zcl}_{k}\left(P^{n}\right)$, and hence a lower bound for $\mathrm{TC}_{k}\left(P^{n}\right)$. It requires the following specialized notation.

Definition 1.1. If $n=\sum \varepsilon_{j} 2^{j}$ with $\varepsilon_{j} \in\{0,1\}$ (so the numbers ε_{j} form the binary expansion of n), let

$$
Z_{i}(n)=\sum_{j=0}^{i}\left(1-\varepsilon_{j}\right) 2^{j}
$$

and let

$$
S(n)=\left\{i: \varepsilon_{i}=\varepsilon_{i-1}=1 \text { and } \varepsilon_{i+1}=0\right\} .
$$

Thus $Z_{i}(n)$ is the sum of the 2 -powers $\leq 2^{i}$ which correspond to the 0 's in the binary expansion of n. Note that $Z_{i}(n)=2^{i+1}-1-\left(n \bmod 2^{i+1}\right)$. The i 's in $S(n)$ are those that begin a sequence of two or more consecutive 1's in the binary expansion of n. Also, $\nu(n)=\max \left\{t: 2^{t}\right.$ divides $\left.n\right\}$.

Theorem 1.2. For $n \geq 0$ and $k \geq 3$,

$$
\begin{equation*}
\operatorname{zcl}_{k}\left(P^{n}\right)=k n-\max \left\{2^{\nu(n+1)}-1,2^{i+1}-1-k Z_{i}(n): i \in S(n)\right\} . \tag{1.3}
\end{equation*}
$$

It was shown in [1] that, if $2^{e} \leq n<2^{e+1}$, then $\operatorname{zcl}_{2}\left(P^{n}\right)=2^{e+1}-1$, which follows immediately from our Theorem 1.6.

In Table 1, we tabulate $\operatorname{zcl}_{k}\left(P^{n}\right)$ for $1 \leq n \leq 17$ and $2 \leq k \leq 8$.
The smallest value of n for which two values of i are significant in (1.3) is $n=102=2^{6}+2^{5}+2^{2}+2^{1}$. With $i=2$, we have $7-k$ in the max, while with $i=6$, we have $127-25 k$. Hence

$$
\operatorname{zcl}_{k}\left(P^{102}\right)=102 k- \begin{cases}127-25 k & 2 \leq k \leq 5 \\ 7-k & 5 \leq k \leq 7 \\ 0 & 7 \leq k\end{cases}
$$

For all k and $n, \mathrm{TC}_{k}\left(P^{n}\right) \leq k n$ for dimensional reasons ([1, Prop 2.2]). Thus we obtain a sharp result $\mathrm{TC}_{k}\left(P^{n}\right)=k n$ whenever $\mathrm{zcl}_{k}\left(P^{n}\right)=k n$. Corollary 3.4 tells exactly when this is true. Here is a simply-stated partial result.

Proposition 1.4. If n is even, then $\mathrm{TC}_{k}\left(P^{n}\right)=k n$ for $k \geq 2^{\ell+1}-1$, where ℓ is the length of the longest string of consecutive 1's in the binary expansion of n.

https://daneshyari.com/en/article/8897356

Download Persian Version:

https://daneshyari.com/article/8897356

Daneshyari.com

[^0]: E-mail address: dmd1@lehigh.edu.
 ${ }^{1}$ Farber's definition did not include the "one less than" part, but most recent papers have defined it as we are doing here.
 https://doi.org/10.1016/j.jpaa.2017.11.003
 0022-4049/© 2017 Elsevier B.V. All rights reserved.

