Corrigendum
Corrigendum to "On the numerical range of matrices over a finite field" [Linear Algebra Appl.

E. Ballico ${ }^{1}$

Dept. of Mathematics, University of Trento, 38123 Povo (TN), Italy

```
A R T I C L E I N F O
```


Article history:

Received 4 November 2016
Accepted 20 July 2018
Available online 27 July 2018
Submitted by C.-K. Li

MSC:

15A33
15A60
12E20

Keywords:
Numerical range
Matrix
Finite field

We correct 3 key mistakes in [1]. We use the notation of [1] and in particular for each matrix $M \in M_{n, n}\left(\mathbb{F}_{q^{2}}\right)$ let $\operatorname{Num}(M)$ denote the numerical range of M.

First correction: In the statement of [1, Proposition 2] $c_{2} \in \operatorname{Num}(M)$ if $\left\langle v_{2}, v_{2}\right\rangle \neq 0$, but if $\left\langle v_{2}, v_{2}\right\rangle=0$, then $c_{2} \in \operatorname{Num}(M)$ only if c_{2} is contained in one of the other ρ circles, i.e. if $\left\langle v_{2}, v_{2}\right\rangle=0$ we cannot guarantee that $c_{2} \in \operatorname{Num}(M)$.

[^0]Second correction: The following statement corrects [1, Proposition 3], i.e. we have $0 \notin \operatorname{Num}(M)$.

Proposition 1. Assume $n=2$ and that M has eigenvalues $c_{1}, c_{2} \in \mathbb{F}_{q^{2}}$ and $v_{i} \in \mathbb{F}_{q^{2}}^{2} \backslash\{0\}$, $i=1,2$, such that $c_{1} \neq c_{2}, M v_{i}=c_{i} v_{i}$ and $\left\langle v_{i}, v_{i}\right\rangle=0$ for all i. Then $\sharp(\operatorname{Num}(M))=q$ and $\operatorname{Num}(M)=\left\{t \in \mathbb{F}_{q^{2}} \mid t^{q}+t=1\right\}$.

Proof. In the proof of [1, Proposition 3] we correctly reduced to the case $c_{1}=0$ and $c:=c_{2}-c_{1} \neq 0$ with $\left\langle v_{1}, v_{2}\right\rangle=\left\langle v_{2}, v_{1}\right\rangle=1$. The error was the claim in the sixth line of the proof of $[1$, Proposition 3] that $0 \in \operatorname{Num}(M)$. Now we check that $0 \notin \operatorname{Num}(M)$. Take $u=x v_{1}+y v_{2} \in C_{2}(1)$ with $\langle u, u\rangle=1$, i.e. with $x^{q} y+x y^{q}=1$ and hence $x y \neq 0$. We have $\langle u, M u\rangle=c x^{q} y \neq 0$.

Third correction: Proposition 1 is a counterexample to part (d) of [1, Theorem 1]. The error is in the proof of [1, Lemma 5]. The corrected version is the following one (in which we only claim that $\sharp(\operatorname{Num}(M)) \geq q$ instead of the strict inequality and that even this weaker inequality has one exception).

Theorem 1. Assume $q \neq 2$. If $n>2$ assume q odd. Take $M \in M_{n, n}\left(\mathbb{F}_{q^{2}}\right)$ such that M is not a multiple of a diagonal matrix. Then either $\sharp(\operatorname{Num}(M)) \geq q$ or $n=2$, $\sharp(\operatorname{Num}(M))=q-1, M$ has a unique eigenvalue, c, with $\operatorname{dim} \operatorname{ker}\left(M-c \mathbb{I}_{2 \times 2}\right)=1$ and the kernel of $M-c \mathbb{I}_{2 \times 2}$ is spanned by a vector $v \in \operatorname{ker}\left(M-c \mathbb{I}_{2 \times 2}\right)$ with $\langle v, v\rangle=0$.

See Examples 1 and 2 for explicit counterexamples.

1. Proof of Theorem 1

The Galois group of the inclusion $\mathbb{F}_{q} \subset \mathbb{F}_{q^{2}}$ has order 2 and it is generated by the Frobenius map $\sigma: t \mapsto t^{q}$.

Lemma 1. Take $M \in M_{n, n}\left(\mathbb{F}_{q^{2}}\right)$ such that $M^{\dagger}=M$. Then $\langle u, M u\rangle \in \mathbb{F}_{q}$ for all $u \in$ $C_{n}(1):=\left\{z \in \mathbb{F}_{q^{2}}^{n} \mid\langle z, z\rangle=1\right\}$.

Proof. We have $\langle u, M u\rangle=\langle M u, u\rangle=\sigma(\langle u, M u\rangle)$ and hence $\langle u, M u\rangle \in \mathbb{F}_{q}$ ($[1$, Remark 1]).

First assume q odd. If q is odd, $\mathbb{F}_{q^{2}}$ is obtained from \mathbb{F}_{q} adding a root β of the polynomial $f(t):=t^{2}-\alpha$, where α is not a square in \mathbb{F}_{q}. The other root is $-\beta$ and hence $\sigma(\beta)=-\beta$, i.e. $\beta^{q}=-\beta$. Thus $\mathbb{F}_{q^{2}}=\mathbb{F}_{q}+\mathbb{F}_{q} \beta$ as an $\mathbb{F}_{q^{2}}$-vector space. For any $z=x+y \beta \in \mathbb{F}_{q^{2}}$ with $x, y \in \mathbb{F}_{q}$ set $\Re z:=x$ and $\Im z:=y$. Since $\sigma(z)=x-$ βy, we have $\Re z=\left(z+z^{q}\right) / 2$ and $\Im z=\left(z-z^{q}\right) / 2 \beta$. For any $M \in M_{n, n}\left(\mathbb{F}_{q^{2}}\right)$ set $M_{+}:=\left(M+M^{\dagger}\right) / 2$ and $M_{-}:=\left(M-M^{\dagger}\right) / 2 \beta$. We have $M_{+}^{\dagger}=M_{+}$. Since $\beta^{q}=-\beta$, we have $M_{-}^{\dagger}=M_{-}$. Hence $M=M_{+}+\beta M_{-}$with M_{+}and M_{-}Hermitian matrices. For any $u \in \mathbb{F}_{q^{2}}^{n}$ we have $\langle u, M u\rangle=\left\langle u, M_{+} u\right\rangle+\beta\left\langle u, M_{-} u\right\rangle$ with $\left\langle u, M_{+} u\right\rangle \in \mathbb{F}_{q}$ and

https://daneshyari.com/en/article/8897702

Download Persian Version:
https://daneshyari.com/article/8897702

Daneshyari.com

[^0]: DOI of original article: https://doi.org/10.1016/j.laa.2016.09.036.
 E-mail address: ballico@science.unitn.it.
 ${ }^{1}$ The author was partially supported by MIUR and GNSAGA of INdAM (Italy).

