# Matrices over finite fields as sums of periodic and nilpotent elements 

Simion Breaz<br>Babeş-Bolyai University, Faculty of Mathematics and Computer Science, Str. Mihail Kogălniceanu 1, 400084 Cluj-Napoca, Romania

## A R T I C L E I N F O

## Article history:

Received 7 February 2018
Accepted 13 June 2018
Available online 18 June 2018
Submitted by P. Semrl

## MSC:

15A24
15B33
16U99

Keywords:
Periodic matrix
Nilpotent matrix
Companion matrix

## A B S T R A C T

We prove that every $n \times n$ matrix $M$ over a field of odd cardinality $q$ has a decomposition of the form $M=E+N$ such that $E^{q}=E$ and $N^{3}=0$.
© 2018 Elsevier Inc. All rights reserved.

## 1. Introduction

The study of representing matrices over division rings as sums of nilpotent and idempotent matrices has a long history. We refer to [5], [7], and [12] for some classical results, respectively to [2], [4], [8], [11] and [9] for some recent approaches.

In [3] and [6] it was proved that every matrix from the ring $\mathcal{M}_{n}(D)$ of $n$-by- $n$ matrices over a division ring $D$ is a sum of an idempotent matrix and a nilpotent matrix if and

[^0]only if $D=\mathbb{F}_{2}$, the field with two elements. This result was substantially improved by Ster in [13, Theorem 2]. He proved that every matrix $M$ over $\mathbb{F}_{2}$ has a decomposition of the form $M=E+N$ such that $E$ is idempotent and $N$ a nilpotent matrix of nilpotence degree at most 4 (i.e. $N^{4}=0$ ).

The main result of [3] was extended in [1] to finite fields of arbitrarily characteristic: if $F$ is a field of cardinality $q$ then every matrix over $F$ has a decomposition $M=E+N$ such that $E^{q}=E$ and $N$ is nilpotent. In this note we will prove that if the field $F$ is of odd characteristic then there exists such a decomposition such that the nilpotence degree of $N$ is at most 3 :

Theorem 1. Let $F$ be a finite field of odd cardinality $q$. If $n$ positive integer and $M$ is an $n \times n$ matrix over $F$ then there exist two $n \times n$ matrices $E$ and $N$ such that $M=E+N$, $E^{q}=E$ and $N^{3}=0$.

In the end it is proved that there exist $3 \times 3$ matrices $A$ over $\mathbb{F}_{3}$ which cannot be decomposed as $A=E+N$ with $E^{3}=E$ and $N^{2}=0$.

## 2. The proof

We fix a finite field $F$ of odd cardinality $q$. It is enough to prove that every companion matrix

$$
C_{c_{0}, c_{1}, \ldots, c_{n-1}}=\left[\begin{array}{ccccc}
0 & 0 & \cdots & 0 & -c_{0} \\
1 & 0 & \cdots & 0 & -c_{1} \\
0 & 1 & \cdots & 0 & -c_{2} \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & 0 & -c_{n-2} \\
0 & 0 & \cdots & 1 & -c_{n-1}
\end{array}\right]
$$

has a decomposition as those described in Theorem 1.
We will use the following result, which is extracted from (the proof of) [13, Lemma 2.1]:

Lemma 2. Let $F$ be a field. For every companion matrix $C=C_{c_{0}, c_{1}, \ldots, c_{n-1}}$ there exists a basis $\left(f_{1}, \ldots, f_{n}\right)$ of $F^{n}$ such that

1. the matrix associated to $C$ with respect to $\left(f_{1}, \ldots, f_{n}\right)$ is of the form

$$
D_{d_{0}, \ldots, d_{n-1}}=C_{d_{0}, d_{1}, \ldots, d_{n-1}}+\operatorname{diag}(1,0,1,0, \ldots)
$$

2. $f_{1}=e_{1}=(1,0, \ldots, 0)$, the first vector from the canonical basis of $F^{n}$.

We will use this lemma to conclude that it is enough to consider matrices of some special forms. In order to describe these forms, we will use the notations:

# https://daneshyari.com/en/article/8897716 

Download Persian Version:

## https://daneshyari.com/article/8897716

## Daneshyari.com


[^0]:    E-mail address: bodo@math.ubbcluj.ro.

