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Commuting functions of matrices over topological fields

Yaroslav Shitov

Russia, 129346 Moscow, Izumrudnaya ulitsa, dom 65, kvartira 4

Abstract

Any continuous function f : Fn×n → Fn×n satisfying xf(x) ≡ f(x)x can be
written as f(x) ≡ α0(x)x

0 + . . . + αn−1(x)x
n−1, where α : Fn×n → Fn is a

mapping continuous on the set of non-derogatory matrices. Brešar and Šemrl
proved this fact for F = C, and we give a short proof of their result which
is moreover valid over any topological field. For F ∈ {R,C}, we provide
an example of a function f for which any appropriate α is discontinuous at
every derogatory matrix.
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A field F is called topological if it is endowed with a topology T such that
the addition, subtraction, multiplication, and division are continuous. (Here
and in what follows, we assume that Fn holds the natural product topology,
and we call a mapping f : X → Y continuous if the preimage of any open
subset of Y is open in X.) Also, we will assume that any singleton subset
of F is closed and not open; these assumptions are needed to get rid of the
cases T = 2F and T = {∅,F}, which are trivial to analyze. The obvious
fact that every linear mapping on Fn is continuous implies the following.

Observation 1. An affine subspace V � Fn is closed and not open.

1. The result

We recall that a matrix x ∈ Fn×n is called non-derogatory if the powers
x0, . . . , xn−1 are linearly independent over F . In other words, there exists
a tuple τ = (τ1, . . . , τn) of indexes in {1, . . . , n} × {1, . . . , n} such that the
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