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Of concern is the study of the space of curves in homogeneous spaces. Motivated 
by applications in shape analysis we identify two curves if they only differ by their 
parametrization and/or a rigid motion. For curves in Euclidean space the Square-
Root-Velocity-Function (SRVF) allows to define and efficiently compute a distance 
on this infinite dimensional quotient space. In this article we present a generalization 
of the SRVF to curves in homogeneous spaces. We prove that, under mild conditions 
on the curves, there always exist optimal reparametrizations realizing the quotient 
distance and demonstrate the efficiency of our framework in selected numerical 
examples.

© 2018 Published by Elsevier B.V.

1. Introduction

Comparing shapes of curves is a topic of intrinsic interest and, in addition, it is of relevance in many 
applications in the broad area of shape analysis [39,33,5]. Usually the notion of “shape” means comparing 
curves without regard to rigid motions or reparametrizations. Thus, it implies modding out the space of 
parametrized curves by the group of rigid motions, and/or the group of reparametrizations. We might be 
interested in curves in a flat Euclidean space (for example, the outline of an image in a photograph), or we 
might be interested in curves that lie on a space that is itself curved (for example, hurricane tracks on the 
surface of the earth or paths of positive definite symmetric matrices in brain connectivity analysis). This 
paper is primarily concerned with the second of these two cases.

To outline our approach to this problem, let P([0, 1], M) denote the set of parametrized curves in a 
Riemannian manifold M . Thinking of P([0, 1], M) as an infinite dimensional manifold, we wish to equip 
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it with a Riemannian metric that is invariant under the group of isometries of M and under the group of 
reparametrizations. In this way, we can induce a metric on the quotient of P([0, 1], M) by either, or both, 
of these groups. This will allow us to quantify the difference between shapes of curves by calculating the 
length of the shortest geodesic joining them in the quotient space. We can also perform statistical analyses 
on sets of curves by using techniques of non-linear statistics on this quotient manifold.

For the case M = R
n several metrics have been defined satisfying the required invariances, see, e.g., 

[5,6,25,34,32,37,21] and the references therein. The main goal of this paper is to take a particularly useful 
one of these metrics, the elastic metric associated with the “square root velocity function” (SRVF), and 
generalize it to curves in a homogeneous manifold M . (A homogeneous manifold is a quotient of a Lie group 
by a closed subgroup. For the purpose of this paper we will only consider the case where the subgroup is 
compact.)

Previous work on curves in Rn: In [26,24,2], Michor and Mumford showed that the simplest reparametriza-
tion invariant L2-metric on P([0, 1], Rn) is an inadequate choice for shape analysis as it results in vanishing 
geodesic distance, i.e., for any two curves c1, c2 ∈ P([0, 1], Rn) there exist paths of arbitrarily short length 
connecting them. Subsequently it has been shown in [25] that this degeneracy can be overcome by adding 
higher order derivatives in the definition of the metric, yielding to the class of reparametrization invariant 
Sobolev metrics. While this class of metrics allows one to prove strong theoretical results [10], it can be 
difficult to calculate the corresponding minimizing geodesics and thus obtain the distance function on the 
shape space of curves. (See also the recent article on a numerical framework for general second order Sobolev 
metrics [3].)

For planar curves (i.e., M = R
2), Younes et al. [40,38] consider a specific first order Sobolev metric, 

that gives rise to an efficient method for calculating geodesics in the space of parametrized curves. Their 
methods are, however, very specific to R2.

In [27], Mio et al. considered a family of “elastic metrics” on the space of planar curves. Intuitively, this 
family allows one to attach different weights to perturbations in the tangent direction (“stretching”) and in 
the normal direction (“bending”). A precise formula for this metric is given by

Gc(v1, v2) =
1∫

0

a2〈Dsv
⊥
1 , Dsv

⊥
2 〉 + b2〈Dsv

�
1 , Dsv

�
2 〉ds, (1)

where c : [0, 1] → R
2 is a parametrized curve, v1 and v2 are vector fields along this curve, Ds and ds denote 

differentiation and integration with respect to arc-length, and Dsv
⊥
1 (resp. Dsv

�
1 ) denotes the component 

of Dsv1 that is normal (resp. tangent) to the tangent vector c′ of the curve. For the case a = b, this metric 
is precisely the one studied by Younes et al.

In [34], Srivastava et al. found, analogous to the transformation of [40], an efficient representation of the 
elastic metric with parameter values a = 1 and b = 1

2 . In contrast to the work [40] their framework is valid 
for curves with values in arbitrary Rn. This method, known as the square root velocity function, has proved 
extremely successful for computations and has been used in numerous applications in shape analysis, see 
[33] and the references therein. The SRVF method has several important properties:

1. The metric is extended to the space of all absolutely continuous curves, a much larger space of curves 
than smooth immersions.

2. The space of open parametrized curves is metrically and geodesically complete, and there are explicit 
formulas to compute geodesics.

3. As a consequence of 2, modding out by the reparametrization group can be implemented efficiently 
using, e.g., a dynamic programming algorithm.
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