ARTICLE IN PRESS

Available online at www.sciencedirect.com

Journal of Differential Equations

J. Differential Equations ••• (••••) •••-•••

www.elsevier.com/locate/jde

Various expansive measures for flows *

Keonhee Lee^a, C.A. Morales^{b,*}, Ngoc-Thach Nguyen^a

^a Department of Mathematics, Chungnam National University, Daejeon 305-764, Republic of Korea ^b Instituto de Matematica, Universidade Federal do Rio de Janeiro, P.O. Box 68530, 21945-970 Rio de Janeiro, Brazil

Received 27 April 2017; revised 11 April 2018

Abstract

We discuss a characterization of countably expansive flows in measure-theoretical terms as in the discrete case [2]. More precisely, we define the *countably expansive flows* and prove that a homeomorphism of a compact metric space is countable expansive just when its suspension flow is. Moreover, we exhibit a measure-expansive flow (in the sense of [4]) which is not countably expansive. Next we define the weak expansive measures for flows and prove that a flow of a compact metric space is countable expansive if and only if it is *weak measure-expansive* (i.e. every orbit-vanishing measure is weak expansive). Furthermore, unlike the measure-expansive ones, the weak measure-expansive flows may exist on closed surfaces. Finally, it is shown that the integrated flow of a C^1 vector field on a compact smooth manifold is C^1 stably expansive if and only if it is C^1 stably weak measure-expansive.

© 2018 Published by Elsevier Inc.

MSC: primary 54H20; secondary 37B05

Keywords: Expansive homeomorphism; Expansive measure; Countably expansive

⁶ Corresponding author.

https://doi.org/10.1016/j.jde.2018.04.036

0022-0396/© 2018 Published by Elsevier Inc.

 $^{^{*}}$ The first author was supported by the NRF grant funded by the Korea government (MSIP) (No. NRF-2015R1A2A2A01002437). The second by CNPq (No. CNPq-303389/2015-0).

E-mail addresses: khlee@cnu.ac.kr (K. Lee), morales@impa.br (C.A. Morales), ngngocthach91@gmail.com (N.-T. Nguyen).

2

ARTICLE IN PRESS

K. Lee et al. / J. Differential Equations ••• (••••) •••-•••

1. Introduction

The expansive homeomorphisms were conceived by Utz in the middle of the twenty century [10]. Precisely, a homeomorphism $f: X \to X$ of a metric space X is *expansive* if there is $\epsilon > 0$ such that x = y whenever $x, y \in X$ satisfy $d(f^n(x), f^n(y)) \le \epsilon$ for every $n \in \mathbb{Z}$. Equivalently, if $\Gamma_{\epsilon}(x) = \{x\}$ for all $x \in X$ where

$$\Gamma_{\epsilon}^{f}(x) = \{ y \in X : d(f^{n}(x), f^{n}(y)) \le \epsilon \text{ for all } n \in \mathbb{Z} \}.$$

Several generalizations of this definition have been appearing in the literature. Of particular interest are the following ones: We say that f is *countably expansive* if there is $\epsilon > 0$ such that $\Gamma_{\epsilon}^{f}(x)$ is countable for all $x \in X$. Moreover, f is *measure-expansive* if every non-atomic Borel probability measure μ of X is expansive, namely, there is $\delta > 0$ such that $\mu(\Gamma_{\delta}^{f}(x)) = 0$ for every $x \in X$. *Non-atomic* means $\mu(\{x\}) = 0$ for every $x \in X$. In their recent note [2] Artigue and Carrasco-Olivera proved the equivalence between these notions: A homeomorphism of a complete separable metric space is countably expansive if and only if it is measure-expansive.

In this paper we will discuss a similar equivalence but for (continuous) flows. In such a context a flow $\phi : X \times \mathbb{R} \to X$ on X called *measure-expansive* if every ϕ -orbit-vanishing measure is expansive [4]. Recall that a Borel probability measure μ of X is an expansive measure of ϕ if there is $\delta > 0$ such that $\mu(B) = 0$ for every measurable subset $B \subset \Gamma^{\phi}_{\delta}(x)$) and every $x \in X$ where

$$\Gamma^{\varphi}_{\delta}(x) = \{ y \in X : d(\phi_t(x), \phi_{c(t)}(y)) \le \delta \text{ for some } c \in \mathcal{C} \text{ and all } t \in \mathbb{R} \}$$

and C stands for the set of continuous maps $c : \mathbb{R} \to \mathbb{R}$ fixing 0. Also μ is ϕ -orbit-vanishing if $\mu(\phi_{\mathbb{R}}(x)) = 0$ for all $x \in X$ where $\phi_{\mathbb{R}}(x) = \{\phi_t(x) : t \in \mathbb{R}\}$ denotes the orbit of x.

On the other hand, there is no definition of countably expansive flow in the literature yet. The less general definition of *N*-expansive flow was managed by Cordeiro [5] (see also [1]). Let N, $Hom(\mathbb{R}, 0)$ and $C^0(A, \mathbb{R})$ be a positive integer, the set of homeomorphisms of \mathbb{R} fixing 0 and the set of continuous maps from $A \subseteq X$ to \mathbb{R} respectively. We say that ϕ is *N*-expansive if for every $\epsilon > 0$ there is $\delta > 0$ such that for every compact subset $A \subseteq X$ and every map $\alpha : A \to Hom(\mathbb{R}, 0)$ satisfying $\alpha(\cdot)(t) \in C^0(A, \mathbb{R}), \alpha(x_\alpha) = id$ (identity of \mathbb{R}) for some $x_\alpha \in A$ and

$$diam(\{\phi_{\alpha(x)(t)}(x) : x \in A\}) \le \delta, \qquad \forall t \in \mathbb{R}.$$

there is $B \subseteq A$ with at most N elements such that $A \subseteq \bigcup_{x \in B} \phi_{(-\epsilon,\epsilon)}(x)$.

Of course it is possible to modify this definition to obtain a notion of countably expansive flow (just demand B above to be at most countable). However, we will manage the following one which looks simpler.

Definition 1.1. We say that ϕ is *countably expansive* if there is $\delta > 0$ (called expansivity constant) such that for any $x \in X$ and $c \in C$ there exists an at most countable subset $B \subseteq X$ such that $\Gamma^{\phi}_{\delta c}(x) \subseteq \bigcup_{x \in B} \phi_{\mathbb{R}}(x)$, where

$$\Gamma^{\phi}_{\delta,c}(x) = \bigcap_{t \in \mathbb{R}} \phi_{-c(t)}(B[\phi_t(x), \delta]).$$

Please cite this article in press as: K. Lee et al., Various expansive measures for flows, J. Differential Equations (2018), https://doi.org/10.1016/j.jde.2018.04.036

Download English Version:

https://daneshyari.com/en/article/8898640

Download Persian Version:

https://daneshyari.com/article/8898640

Daneshyari.com