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Abstract

We study the effect of additive Brownian noise on an ODE system that has a stable hyperbolic limit cycle, 
for initial data that are attracted to the limit cycle. The analysis is performed in the limit of small noise – that 
is, we modulate the noise by a factor ε ↘ 0 – and on a long time horizon. We prove explicit estimates on the 
proximity of the noisy trajectory and the limit cycle up to times exp

(
cε−2

)
, c > 0, and we show both that 

on the time scale ε−2 the dephasing (i.e., the difference between noiseless and noisy system measured in a 
natural coordinate system that involves a phase) is close to a Brownian motion with constant drift, and that 
on longer time scales the dephasing dynamics is dominated by the drift. The natural choice of coordinates, 
that reduces the dynamics in a neighborhood of the cycle to a rotation, plays a central role and makes the 
connection with the applied science literature in which noisy limit cycle dynamics are often reduced to a 
diffusion model for the phase of the limit cycle.
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1. Introduction

1.1. Noise induced dephasing phenomena

Periods, cycles, rhythms are omnipresent and play a fundamental role. In fact, dynamical 
models proposed in a variety of fields display asymptotically stable periodic behavior, i.e. trajec-
tories are attracted by a periodic trajectory. Important examples come from ordinary differential 
equations (ODE) with stable limit cycles, like the ODE systems for pray-predator dynamics [28, 
Ch. 3], and many more examples from life science described in [28], such as gene networks and 
neural systems. Examples appear also in physics, chemistry and other sciences [10,15,26,32,36]. 
It is often the case that the ODE model is the result of averaging and/or neglecting plenty of 
details of the original system that would be more faithfully modeled by keeping a huge number 
of degrees of freedom. Introducing noise is therefore a way to go a step closer to reality. It is 
then natural to think of the noise as small, for example when one is considering the dynamics 
of macroscopic quantities, i.e. averages of quantities of interest over a whole population. This 
raises the question, what is the effect of noise on this type of limit cycles?

This is of course not a novel question and it has been often tackled aiming at reducing the 
system to a phase. It is known in fact that in absence of noise and in the proximity of the limit 
cycle such ODE systems can be reduced to the dynamics of a phase. Furthermore, the system 
can be mapped to a constant speed rotation on the unit circle [21]. It is therefore natural to seek 
for phase reductions also in the stochastic setting and a phase reduction for stochastic systems is 
proposed for example in [26] and has been employed in a number of contexts, see for example 
the references in [37]. In [37] it has been pointed out that the stochastic phase reduction model 
that has been used is not accurate and that the noise, even when it is white, induces a frequency 
shift. In [37] a formal small noise development of the solution is given. Clearly, since the noise 
is weak the leading order behavior – what we may call the macroscopic behavior – is just the 
noiseless behavior. The purpose of [37] and of much of the literature (similar analyses in fact are 
developed for example in [10, Ch. 6] and [34, § 10.2], with plenty of references) has been on 
catching both the stochastic and deterministic leading order corrections. Our purpose is to put 
these works on rigorous and more quantitative grounds, changing somewhat the perspective. The 
question is rather: on which time scale the difference between the phase dynamics in the noisy 
and noiseless systems becomes macroscopic and, on this time scale, what is the dynamics? The 
answer, and central result of our contribution, is that the scale is ε−2 if the additive stochastic 
term is proportional to ε > 0, and that the dephasing dynamics in the limit ε ↘ 0 is a Brownian 
motion with a constant drift, which corresponds to the frequency shift described in [37].

It is at this point important to stress the following mathematical contributions:

• In [2] the issue of noisy limit cycles is taken up, but the results (see in particular [2, Th. 5.2.3]) 
are limited to o

(
ε−2

)
times: the leading order correction to the deterministic cycle on this 

scale of time is captured, but it is simply given by a Brownian motion and the noise induced 
drift is absent. This is not in contradiction with our result: a Brownian motion with a drift at 
infinitesimal times is, to leading order, just a Brownian motion.

• A limit cycle can be seen as an invariant manifold and detailed mathematical work has been 
developed for systems with a stable hyperbolic manifolds of stationary solutions (see [25,
19] to cite only the finite dimensional cases). These works do analyze the time scale ε−2

capturing a noise induced drift that is the analog of what we find. In [31] the limit diffusion 
process (notably the noise induced drift) is worked out more explicitly than in [25,19] and in 
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