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The localization of a critical point of minimum type of a smooth functional is ob-
tained in a bounded convex conical set defined by a norm and a concave upper 
semicontinuous functional. A vector version is also given in order to localize com-
ponentwise solutions of variational systems. The technique is then used for the 
localization and multiplicity of Nash-type positive equilibria of nonvariational sys-
tems. Applications are given to periodic problems.
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1. Introduction

Many equations and systems arising from mathematical modeling require positive solutions as acceptable 
states of the investigated real processes. Mathematically, finding positive solutions means to work in the 
positive cone of the space of all possible states. However, a cone is an unbounded set and in many cases 
nonlinear problems have several positive solutions. Thus it is important to localize solutions in bounded 
subsets of a cone. There are known methods for the localization of solutions based on topological fixed 
point theory [6], [8]; Leray–Schauder degree theory [6]; upper and lower solutions, maximum principles 
and differential inequalities [2–4], [21]; and critical point theory [1], [5], [7], [12], [15–17], [20], [22], [23]. 
In case of problems having a variational structure, that is, whose solutions are critical points of an ‘energy’ 
functional, the variational techniques are of particular interest since they are able not only to prove the 
existence of solutions but also to give information about the variational properties of the solutions of a 
physical relevance, for instance, of being a minimizer, a maximizer or a saddle point of the associated energy 
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functional. As known from the classical Fermat’s theorem, local extrema of a differentiable functional in a 
bounded region are not necessarily critical points of that functional. However, this happens if the functional 
has an appropriate behavior on the boundary of the region (see [12], [15], [22] and [23]).

The problem becomes even more interesting in case of a system which has not a variational structure, 
but each of its component equations has, i.e., there exist real functionals E1, E2 such that the system is 
equivalent to the equations

{
E11 (u, v) = 0
E22 (u, v) = 0

where E11 (u, v) is the partial derivative of E1 with respect to u, and E22 (u, v) is the partial derivative of 
E2 with respect to v. How the solutions (u, v) of this system are connected to the variational properties of 
the two functionals? One possible situation, which fits to physical principles, is that a solution (u, v) is a 
Nash-type equilibrium of the pair of functionals (E1, E2) (see, e.g., [9], [13] and [24]), that is

E1 (u, v) = min
w

E1 (w, v)

E2 (u, v) = min
w

E2 (u,w) .

A result in this direction is given in [18] for the case when minw is taken, first over an entire Banach space 
and then, over a ball. Non-smooth analogues of those results, for Szulkin functionals, are presented in [19].

In the present paper the localization of a Nash-type equilibrium (u, v) is obtained in the Cartesian product 
of two conical sets, more exactly u ∈ K1, v ∈ K2 where Ki (i = 1, 2) is a cone of a Hilbert space Xi with 
norm ‖·‖i, and

r1 ≤ l1 (u) , ‖u‖1 ≤ R1,

r2 ≤ l2 (v) , ‖v‖2 ≤ R2,

for some positive numbers ri and Ri, i = 1, 2. Here li : Ki → R+ are two given functionals. Compared to 
our previous papers on the localization of critical points in annular conical sets (see [15–17] and [20]), where 
li were norms, here they are upper semicontinuous concave functionals. In applications, when working in 
spaces of functions, such a functional l (u) can be inf u. If in addition, due to some embedding result, the 
norm ‖u‖ is comparable with supu in the sense that supu ≤ c ‖u‖ for every nonnegative function u and 
some constant c > 0, then the values of any nonnegative function u satisfying r ≤ l (u) and ‖u‖ ≤ R belong 
to the interval [r, cR], which is very convenient for finding multiple solutions located in disjoint annular 
conical sets.

The paper is structured as follows: first in Section 2 we establish the localization of a critical point of 
minimum type in a convex conical set as above and we explain how this result can be used in order to obtain 
finitely or infinitely many solutions. The result can be seen as a variational analogue of some Krasnoselskii’s 
type compression–expansion theorems from fixed point theory (see, e.g., [8], [10] and [11]). The vector 
version of this result for gradient type systems is obtained in Section 3. It allows to localize individually the 
components of a solution. Section 4 is devoted to the existence and localization of Nash-type equilibria for 
nonvariational systems of two equations. An iterative algorithm is used and its convergence is established 
assuming a local matricial contraction condition. The local character of the contraction condition makes 
possible a repeat application of the algorithm to a number of disjoint conical sets and thus the obtainment 
of multiple Nash-type equilibria. The theory developed in Sections 2, 3 and 4 is illustrated in Section 5 on 
the periodic problem.
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