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1. Picard’s theorem asserts that an entire function, i.e., a complex-valued function differentiable in the 
complex plane C, omitting two complex numbers must be constant. It also implies, by a linear transform, 
the meromorphic version of the theorem that a meromorphic function in C omitting three distinct values 
must be constant. Picard’s theorem is among the most striking results in complex analysis and plays a 
decisive role in the development of the theory of entire and meromorphic functions and other applications. 
It is a significant strengthening of Liouville’s Theorem which states that a bounded entire function must be 
constant. While Liouville’s Theorem can be treated as a consequence of Cauchy’s formula/theorem, Picard’s 
theorem is generally not encountered until advanced complex analysis involving rather heavy machinery. 
Different proofs of Picard’s theorem are known (see [1–7], [12], etc.). We refer to [10] for an exposition (the 
history, methods and references) of the theorem.

In this short article, we give a connection/equivalence between Picard’s theorem and characterization 
of entire solutions of a differential equation, which does not seem to have been observed before and may 
lead further results on Picard type theorems and complex (ordinary and partial) differential equations 
(cf. §2).

Theorem 1. Let a(z) be an entire function and let P (z) be a meromorphic function in C with at least two 
distinct zeros. Then an entire solution of the differential equation
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f ′ + a(z)P (f) = 0 (1)

must be constant.

We will see that this theorem immediately gives Picard’s theorem; as a matter of fact, Theorem 1 and 
Picard’s theorem are equivalent. Before that, we first give counterexamples to show that Theorem 1 is best 
possible in various aspects in the following

Remark. (i) Theorem 1 does not hold if the function P is assumed to have at most one zero (counting or 
ignoring multiplicities). For example, let P (z) = zn (n ≥ 0 an integer), and a(z) = −e−(n−1)z. Then f = ez

is a nonconstant entire solution of the equation (1).

(ii) The function a(z) in Theorem 1 cannot be improved to a meromorphic function. Let a(z) = − 1
ez−1 and 

p(z) = z(z − 1). Then f = ez is a nonconstant entire solution of the equation (1).

(iii) “Entire solution” in Theorem 1 cannot be improved to “meromorphic solution”. For example, f = 1
ez−1

is a nonconstant meromorphic solution of the equation (1) with a(z) = 1 and p(z) = z(z + 1).

We now show that Theorem 1 and Picard’s Theorem are equivalent in the sense that one implies the 
other.

Theorem 1 =⇒ Picard’s Theorem. Assume that an entire function f omits two distinct complex numbers c, d. 
Then a(z) := f ′

(f−c)(f−d) is entire. Clearly, f ′ − a(z)(f − c)(f − d) = 0. Thus, f must be constant by 
Theorem 1. �
Picard’s Theorem =⇒ Theorem 1. Since the meromorphic function P has at least two distinct zeros, say c, d, 
we can write P (z) = (z − c)m(z − d)ng(z), where m, n are two positive integers and g is a meromorphic 
function in C and holomorphic at c and d. We can then write (1) as

f ′(z) = −a(z)(f(z) − c)m(f(z) − d)ng(f(z)). (2)

We assert that an entire solution f cannot assume c and d; otherwise the right hand side of (2) would have 
a zero (coming from a zero of f − c or f − d) with multiplicity strictly greater than that of the same zero 
of the left hand side (due to the derivative, which decreases the multiplicity), which is absurd. Thus, the 
entire function f omits c and d. By Picard’s theorem, f is constant. �

2. Characterizing complex analytic solutions of differential equations is a topic of a long history. In 
Theorem 1, we are not intended to give the most general differential equations, but rather to expose the 
connection/equivalence between Picard’s theorem and characterization of entire solutions of the differential 
equation. Theorem 1, in the form about entire solutions of a differential equation, leads two natural questions: 
Can Theorem 1 be proved independent of Picard’s theorem (and thus also provide another proof of Picard’s 
theorem)? Can Theorem 1 be generalized for more general ordinary and even partial differential equations? 
Here we include such a proof, inspired by the previous work [7], using “pre-Nevanlinna theory” (cf. below), 
which also shows how Theorem 1 can be pushed over to the following result for partial differential equations

m∑
|α|=1

aα
∂|α|f(z)

∂α1z1 · · · ∂αnzn
+ a(z)P (f(z)) = 0 (3)

where z = (z1, z2, · · · , zn) in Cn, α = (α1, · · · , αn) is a multi-index with |α| = |α1| + · · ·+ |αn| and aα’s are 
constant.
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