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SPECTRALITY OF MORAN MEASURES WITH FOUR-ELEMENT
DIGIT SETS

MIN-WEI TANG AND FENG-LI YIN *

Abstract. Let δE = 1
#E

∑
a∈E δa denote the uniformly discrete probability mea-

sure on a finite set E. We prove that the infinite convolution (Moran measure)

μb,{Dk} = δb−1D1
∗ δb−2D2

∗ · · ·
admits an orthonormal basis of exponential provided that {Dk}∞k=1 is a uniformly
bounded sequence of 4-digit spectral sets, b = 2l+1q with q > 1 an odd integer, and
l sufficiently large (depends on Dk). We also give some examples to illustrate the
result.

1. Introduction

Let μ be a compactly supported Borel probability measure on R
d. μ is called a

spectral measure if there exists a countable set Λ ⊂ R
d such that E(Λ) :=

{
e2πi<λ,x> :

λ ∈ Λ
}
forms an orthonormal basis for L2(μ). In this case, Λ is called a spectrum of

μ and (μ,Λ) is called a spectral pair. If the normalized Lebesgue measure restricting

on a Borel set Ω is a spectral measure, then Ω is called a spectral set. The study

of spectral measures was first initiated by B.Fuglede in 1974 [8], who conjectured

that Ω ⊂ R
d is a spectral set if and only if Ω is a translational tile. The conjecture

has been studied by many authors, e.g., Iosevich, Jorgensen, Kolountzakis, Laba,

Lagarias, Matolcsi, Pedersen, Tao, Wang and many others ([17–23,27,28,30,34]), and

it had baffled experts for 30 years until Tao [34] constructed the first counterexample,

a spectral set which is not a tile on R
d, d ≥ 5. The example and technique were refined

later to disprove the conjecture in both directions on R
d for d ≥ 3. It is still open

in dimensions d = 1 and d = 2. Despite the counterexamples, the exact relationship

between spectral measures and tiling is still mysterious.

For non-atomic singular measures, a class of spectral measures was first found

by Jorgensen and Pedersen (i.e., the 1/q-Cantor measure where q is even) [19], and

Strichartz supplemented their result with a simplified proof [31]. The result was
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