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Abstract

In the paper, the authors significantly and meaningfully simplify two families of nonlinear ordinary differential equations in
terms of the Stirling numbers of the first and second kinds.
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1. Motivations and main results

In this section, we state three motivations and our main results of current paper.

1.1. First motivation

In [1, Theorems 1 and 2], the authors spent five pages to elementarily, recurrently, and inductively prove that the
ordinary differential equations
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, N = 0, 1, 2, . . . (1)
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have a solution

F∓ = F∓(t) =
1

(1 + λ)t/λ ∓ 1
,

where a∓

0 (N ) = 1 and

a∓

j (N ) = (−1)( j∓ j)/2 j !
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· · ·
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( j + 1)i j j i j−1 · · · 2i1 (2)

for 1 ≤ j ≤ N . With the aid of the quantities a∓

j (N ) in (2), the authors further obtained in [1, Theorems 3 and 6,
Corollaries 4, 5, and 7] several identities and explicit expressions of the modified degenerate Euler numbers Ẽn(λ),
the higher order modified degenerate Euler numbers Ẽn(λ), the Euler numbers En , the higher order Euler numbers
En , the modified degenerate Bernoulli numbers β̃n(λ), the higher order modified degenerate Bernoulli numbers
β̃ (r )

n (λ), the Bernoulli numbers Bn , and the higher order Bernoulli numbers B(r )
n , which can be generated respectively

by
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where r ∈ N. This means that the quantities a∓

j (N ) in (2) play an important role in the paper [1].
It is clear that the quantities a∓

j (N ) in (2) are formulated by j multiple sums. To the best of our knowledge, one
cannot understand and compute easily such a j multiple sum. Then we guess that, making use of some different
methods from the one employed in the paper [1], the quantities a∓

j (N ) in (2) should be reformulated simply,
meaningfully, and significantly in terms of some mathematical quantities.

1.2. Second motivation

In the paper [2], Theorem 1 reads that the function

Fq (t) =
1

qet + 1

satisfies

(N − 1)!F N
q =

N∑
k=1

ak(N )F (k−1)
q

for N ≥ 1 and q ∈ R, where

ak(N ) = (−1)N+ks(N , k) (3)

or

ak(N ) =
N !
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, (4)
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