ARTICLE IN PRESS

1889 1929 Available online at www.sciencedirect.com

Transactions of A. Razmadze Mathematical Institute

Transactions of A. Razmadze Mathematical Institute I (IIII)

www.elsevier.com/locate/trmi

Short Communication

Simplifying differential equations concerning degenerate Bernoulli and Euler numbers

Feng Qi^{a,b,c,*}, Jing-Lin Wang^c, Bai-Ni Guo^d

^a Institute of Mathematics, Henan Polytechnic University, Jiaozuo City, Henan Province, 454010, China ^b College of Mathematics, Inner Mongolia University for Nationalities, Tongliao City, Inner Mongolia Autonomous Region, 028043, China ^c Department of Mathematics, College of Science, Tianjin Polytechnic University, Tianjin City, 300387, China ^d School of Mathematics and Informatics, Henan Polytechnic University, Jiaozuo City, Henan Province, 454010, China

> Received 29 June 2017; accepted 1 August 2017 Available online xxxxx

Abstract

In the paper, the authors significantly and meaningfully simplify two families of nonlinear ordinary differential equations in terms of the Stirling numbers of the first and second kinds.

© 2017 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Nonlinear ordinary differential equation; Stirling number of the first kind; Stirling number of the second kind; Bernoulli number; Euler number

1. Motivations and main results

In this section, we state three motivations and our main results of current paper.

1.1. First motivation

In [1, Theorems 1 and 2], the authors spent five pages to elementarily, recurrently, and inductively prove that the ordinary differential equations

$$F_{\mp}^{(N)} = \left(-\frac{1}{\lambda}\ln(1+\lambda)\right)^{N} \sum_{i=1}^{N+1} a_{i-1}^{\mp}(N) F_{\mp}^{i}, \quad N = 0, 1, 2, \dots$$
(1)

Peer review under responsibility of Journal Transactions of A. Razmadze Mathematical Institute.

http://dx.doi.org/10.1016/j.trmi.2017.08.001

Please cite this article in press as: F. Qi, et al., Simplifying differential equations concerning degenerate Bernoulli and Euler numbers, Transactions of A. Razmadze Mathematical Institute (2017), http://dx.doi.org/10.1016/j.trmi.2017.08.001.

^{*} Corresponding author at: Institute of Mathematics, Henan Polytechnic University, Jiaozuo City, Henan Province, 454010, China.

E-mail addresses: qifeng618@gmail.com, qifeng618@hotmail.com, qifeng618@qq.com (F. Qi), jing-lin.wang@hotmail.com (J.-L. Wang), bai.ni.guo@gmail.com, bai.ni.guo@hotmail.com (B.-N. Guo).

^{2346-8092/© 2017} Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

F. Qi et al. / Transactions of A. Razmadze Mathematical Institute I (IIIII)

have a solution

$$F_{\mp} = F_{\mp}(t) = \frac{1}{(1+\lambda)^{t/\lambda} \mp 1},$$

where $a_0^{\mp}(N) = 1$ and

$$a_{j}^{\mp}(N) = (-1)^{(j \mp j)/2} j! \sum_{i_{j}=0}^{N-j} \sum_{i_{j-1}=0}^{N-j-i_{j}} \cdots \sum_{i_{1}=0}^{N-j-i_{j}-\dots-i_{2}} (j+1)^{i_{j}} j^{i_{j-1}} \cdots 2^{i_{1}}$$
(2)

for $1 \le j \le N$. With the aid of the quantities $a_i^{\mp}(N)$ in (2), the authors further obtained in [1, Theorems 3 and 6, Corollaries 4, 5, and 7] several identities and explicit expressions of the modified degenerate Euler numbers $\tilde{\mathcal{E}}_n(\lambda)$, the higher order modified degenerate Euler numbers $\tilde{\mathcal{E}}_n(\lambda)$, the Euler numbers E_n , the higher order Euler numbers E_n , the modified degenerate Bernoulli numbers $\tilde{\beta}_n(\lambda)$, the higher order modified degenerate Bernoulli numbers $\tilde{\beta}_n^{(r)}(\lambda)$, the Bernoulli numbers B_n , and the higher order Bernoulli numbers $B_n^{(r)}$, which can be generated respectively by

$$\frac{2}{(1+\lambda)^{t/\lambda}+1} = \sum_{n=0}^{\infty} \tilde{\mathcal{E}}_n(\lambda) \frac{t^n}{n!}, \qquad \left[\frac{2}{(1+\lambda)^{t/\lambda}+1}\right]^r = \sum_{n=0}^{\infty} \tilde{\mathcal{E}}_n^{(r)}(\lambda) \frac{t^n}{n!}, \\ \frac{2}{e^t+1} = \sum_{n=0}^{\infty} E_n \frac{t^n}{n!}, \qquad \left(\frac{2}{e^t+1}\right)^r = \sum_{n=0}^{\infty} E_n^{(r)} \frac{t^n}{n!}, \\ \frac{t}{(1+\lambda)^{t/\lambda}-1} = \sum_{n=0}^{\infty} \tilde{\beta}_n(\lambda) \frac{t^n}{n!}, \qquad \left[\frac{t}{(1+\lambda)^{t/\lambda}-1}\right]^r = \sum_{n=0}^{\infty} \tilde{\beta}_n^{(r)}(\lambda) \frac{t^n}{n!}, \\ \frac{t}{e^t-1} = \sum_{n=0}^{\infty} B_n \frac{t^n}{n!}, \qquad \left(\frac{t}{e^t-1}\right)^r = \sum_{n=0}^{\infty} B_n^{(r)} \frac{t^n}{n!},$$

where $r \in \mathbb{N}$. This means that the quantities $a_i^{\mp}(N)$ in (2) play an important role in the paper [1].

It is clear that the quantities $a_i^{\pm}(N)$ in (2) are formulated by j multiple sums. To the best of our knowledge, one cannot understand and compute easily such a j multiple sum. Then we guess that, making use of some different methods from the one employed in the paper [1], the quantities $a_{\pm}^{\mp}(N)$ in (2) should be reformulated simply, meaningfully, and significantly in terms of some mathematical quantities.

1.2. Second motivation

In the paper [2], Theorem 1 reads that the function

$$F_q(t) = \frac{1}{qe^t + 1}$$

satisfies

$$(N-1)!F_q^N = \sum_{k=1}^N a_k(N)F_q^{(k-1)}$$

for $N \ge 1$ and $q \in \mathbb{R}$, where

$$a_k(N) = (-1)^{N+k} s(N,k)$$

or

$$a_k(N) = \frac{N!}{k!} \sum_{\substack{\ell_1, \dots, \ell_k \ge 1 \\ \ell_1 + \dots + \ell_k = N}} \frac{1}{\ell_1 + \dots + \ell_k},$$

(3)

(4)

Please cite this article in press as: F. Qi, et al., Simplifying differential equations concerning degenerate Bernoulli and Euler numbers, Transactions of A. Razmadze Mathematical Institute (2017), http://dx.doi.org/10.1016/j.trmi.2017.08.001.

Download English Version:

https://daneshyari.com/en/article/8900384

Download Persian Version:

https://daneshyari.com/article/8900384

Daneshyari.com