Some identities of the generalized Fibonacci and Lucas sequences

Jizhen Yang, Zhizheng Zhang*
Department of Mathematics, Luoyang Normal University, Luoyang 471934, PR China

A R T I C L E I N F O

Keywords:

Generalized Fibonacci sequence
Generalized Lucas sequence
Identity
Congruence

Abstract

The purpose of this paper is to study generalized Fibonacci and Lucas sequences. We first introduce generalized Lucas sequences. Section 2 contains a list of elementary relationships about generalized Fibonacci and Lucas sequences. In Section 3, we give a generalization of the Binet's formulas of generalized Fibonacci, Lucas sequences and its applications. Section 4 is devote to derive many identities and congruence relations for generalized Fibonacci, Lucas sequences by using operator method.

© 2018 Published by Elsevier Inc.

1. Introduction

Fibonacci numbers and their generalizations have many interesting properties and applications to almost every field of science and art [5]. Fibonacci numbers are frequently extended. For recent generalizations, see, for example, [4,6,8-10,12]. Specially, in [2,11], Edson and Yayenie introduced and studied a new generalized Fibonacci sequence that depends on two real parameters used in a non-linear (piecewise linear) recurrence as defined below.

Definition 1.1. For any two nonzero real numbers a and b, the generalized Fibonacci sequence $\left\{q_{n}\right\}_{n=0}^{\infty}$ is defined recursively by

$$
q_{0}=0, \quad q_{1}=1, \quad q_{n}=\left\{\begin{array}{ll}
a q_{n-1}+q_{n-2}, & \text { if } n \text { is even, } \tag{1}\\
b q_{n-1}+q_{n-2}, & \text { if } n \text { is odd, }
\end{array} \quad(n \geq 2)\right.
$$

This generalized Fibonacci sequences have word combinatorial interpretation and they are also closely related to continued fraction expansion of quadratic irrationals (see [2]). Here we introduce the generalized Lucas sequences defined by

Definition 1.2. For any two nonzero real numbers a and b, the generalized Fibonacci sequence $\left\{t_{n}\right\}_{n=0}^{\infty}$ is defined recursively by

$$
t_{0}=2 a, \quad t_{1}=a b, \quad t_{n}=\left\{\begin{array}{ll}
a t_{n-1}+t_{n-2}, & \text { if } n \text { is even, } \tag{2}\\
b t_{n-1}+t_{n-2}, & \text { if } n \text { is odd, }
\end{array} \quad(n \geq 2)\right.
$$

From Definitions 1.1 and 1.2, it is easy to see that when $a=b=1$, we have the classical Fibonacci, Lucas sequences and when $a=b=2$, we obtain the Pell, Pell-Lucas numbers. If we set $a=b=k$, for some positive integer k, we get the

[^0]k-Fibonacci, k-Lucas numbers. If $a=1$ and $b=2$, then members of the sequence q_{n} are denominators of continued fraction converging to $\sqrt{3}$ (see A002530) in [7].

In [2,11], some properties of the generalized Fibonacci sequences q_{n} were studied. In this paper, we first introduce generalized Lucas sequences. Section 2 contains a list of elementary relationships about generalized Fibonacci and Lucas sequences. In Section 3, we give a generalization of the Binet's formulas of generalized Fibonacci, Lucas sequences and its applications. Section 4 is devoted to many identities and congruence relations for generalized Fibonacci, Lucas sequences by using operator method.

2. Some preliminary results

In [2,11], Edson and Yayenie gave the following properties of the generalized Fibonacci sequences q_{n}.
Theorem 2.1. Let $\xi(n)=n-2\left\lfloor\frac{n}{2}\right\rfloor=\left\{\begin{array}{ll}0, & n \text { even } \\ 1, & n \text { odd }\end{array}\right.$. Then
(1). ([2, Theorem 5]), Binet's formula: $q_{n}=\left(\frac{a^{1-\xi(n)}}{(a b)^{\lfloor n / 2\rfloor}}\right) \frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}$, where $\alpha=\frac{a b+\sqrt{a^{2} b^{2}+4 a b}}{2}$ and $\beta=\frac{a b-\sqrt{a^{2} b^{2}+4 a b}}{2}$
(2). ([2, Theorem 4]), Generating function: $\sum_{n=0}^{\infty} q_{n} x^{n}=\frac{a\left(1+a x-x^{2}\right)}{1-(a b+2) x^{2}+x^{4}}$;
(3). $([11, p 5604]): q_{m+2}=(a b+2) q_{m}-q_{m-2}$;
(4). ([11, Theorem 1]): $q_{n+6}=(a b+3) a^{1-\xi(n)} b^{\xi(n)} q_{n+3}+q_{n}$;
(5). ([11, Theorem 3]): $a^{\xi(m n+n-m)-1} b^{1-\xi(m n+n-m)} q_{m} q_{n}+a^{-\xi(m n)} b^{\xi(m n)} q_{m-1} q_{n-1}=q_{m+n-1}$;
(6). ([2, Theorem 10]): $\sum_{k=0}^{n}\binom{n}{k} a^{\xi(k)}(a b)^{\left\lfloor\frac{k}{2}\right\rfloor} q_{k}=q_{2 n} ; \sum_{k=0}^{n}\binom{n}{k} a^{\xi(k+1)}(a b)^{\left\lfloor\frac{k+1}{2}\right\rfloor} q_{k+1}=a q_{2 n+1}$;
(7). ([11, Theorem 5]): $q_{n}=\frac{a^{\xi(n+1)}}{2^{n-1}} \sum_{i=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor}\left(2 i^{n}\right)(a b)^{\left\lfloor\frac{n-1}{2}\right\rfloor-i}(a b+4)^{i}$.

Corresponding to Theorem 2.1, according to the method of [2,11] we can get the following results for generalized Lucas sequences t_{n}.

Theorem 2.2. Let $\xi(n)=n-2\left\lfloor\frac{n}{2}\right\rfloor=\left\{\begin{array}{ll}0, & n \text { even } \\ 1, & n \text { odd }\end{array}\right.$. Then
(1). Binet's formula: $t_{n}=\left(\frac{a^{1-\xi(n)}}{(a b)^{[n / 2\rfloor}}\right)\left(\alpha^{n}+\beta^{n}\right)$, where $\alpha=\frac{a b+\sqrt{a^{2} b^{2}+4 a b}}{2}$ and $\beta=\frac{a b-\sqrt{a^{2} b^{2}+4 a b}}{2}$
(2). Generating function: $\sum_{n=0}^{\infty} t_{n} x^{n}=\frac{a\left(2+b x-(a b+2) x^{2}+b x^{3}\right)}{1-(a b+2) x^{2}+x^{4}}$;
(3). $t_{m+2}=(a b+2) t_{m}-t_{m-2}$;
(4). $t_{n+6}=(a b+3) a^{1-\xi(n)} b^{\xi(n)} t_{n+3}+t_{n}$;
(5). $a^{\xi(m n+n-m)-1} b^{1-\xi(m n+n-m)} t_{m} q_{n}+a^{-\xi(m n)} b^{\xi(m n)} t_{m-1} q_{n-1}=t_{m+n-1}$;
(6). $\sum_{k=0}^{n}\binom{n}{k} a^{\xi(k)}(a b)^{\left\lfloor\frac{k}{2}\right\rfloor} t_{k}=t_{2 n}, \sum_{k=0}^{n}\binom{n}{k} a^{\xi(k+1)}(a b)^{\left\lfloor\frac{k+1}{2}\right\rfloor} t_{k+1}=a t_{2 n+1}$;
(7). $t_{n}=\frac{a^{1-\xi(n)}}{(a b)^{\left[\frac{\xi}{2}\right\rfloor} 2^{n-1}} \sum_{i=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\binom{n}{2 i}(a b)^{m-i}(a b+4)^{i}$.

Applying recurrence relations of q_{n} and t_{n}, we add the following identities.
Theorem 2.3. We have

$$
\begin{aligned}
& q_{n} t_{n}=\frac{a^{1-2 \xi(n)}}{(a b)^{2\left\lfloor\frac{n}{2}\right\rfloor-n}} q_{2 n} \\
& \sum_{i=1}^{n} a^{1-\xi(i+1)} b^{\xi(i+1)} q_{i}=q_{n+1}+q_{n}-1, \\
& \sum_{i=1}^{n} a^{1-\xi(i+1)} b^{\xi(i+1)} t_{i}=t_{n+1}+t_{n}-a(b+2) \\
& \sum_{i=1}^{n} q_{2 i-1}=\frac{1}{a} q_{2 n}, \quad \sum_{i=1}^{n} q_{2 i}=\frac{1}{b}\left(q_{2 n+1}-1\right) \\
& \sum_{i=1}^{n} t_{2 i-1}=\frac{1}{a} t_{2 n}-2, \quad \sum_{i=1}^{n} t_{2 i}=\frac{1}{b}\left(t_{2 n+1}-a b\right)
\end{aligned}
$$

https://daneshyari.com/en/article/8900610

Download Persian Version:

https://daneshyari.com/article/8900610

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: yangjizhen116@163.com (J. Yang), zhzhzhang@lynu.edu.cn (Z. Zhang).

