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a b s t r a c t 

A novel two-dimensional coupled lattice Boltzmann model is developed for thermal in- 

compressible fluid flows. A modified equilibrium distribution function is proposed in the 

present model. A mesoscopic discrete force is coupled into the modified equilibrium dis- 

tribution function based on the Boussinesq approximation. The outstanding advantages of 

the standard lattice Boltzmann method are retained in present model besides better nu- 

merical stability. The present model is validated by the numerical simulation of the natural 

and Rayleigh–Benard convection at a wide range of Rayleigh numbers. Excellent agreement 

between the present results and previous lattice Boltzmann method or theoretical predic- 

tion demonstrates that present model is an efficient numerical method for natural and 

Rayleigh–Bénard convection. Further, present model is also successfully assessed consid- 

ering Rayleigh–Taylor instability. It is also easier and convenient to be implemented as 

compared with the previous thermal models. 

© 2018 Published by Elsevier Inc. 

1. Introduction 

Lattice Boltzmann method (LBM) is a new numerical scheme for simulating viscous incompressible flows in the subsonic 

regime [1–8] . Instead of solving the usual continuum hydrodynamic equations, the LBM tries to model the fluid flow by 

tracking the evolution of the distribution functions of the microscopic fluid particles. This kinetic nature of the LBM intro- 

duces some important features that distinguish it from other numerical methods, such as the easy modeling of interactions 

among the fluids and full parallelism. During the past two decades, the LBM has attracted much attention and interest. 

There has been rapid progress in developing new models and applications in a multitude of fields, e.g. [2–5] . Although LBM 

has been successfully applied to simulate the isothermal flow problems, its application in the heat transfer system has not 

achieved such great success because of the severe numerical instability for the thermal models. 

Generally, the current thermal models fall into the following categories: the multispeed method, and the multi- 

distribution function approach proposed by Nie, He, Chen, and Doolen [9–11] . For the multispeed method, two limitations 

severely restrict their applications, the narrow range of temperature variation and the severe numerical instability. The 

∗ Corresponding authors. 

E-mail addresses: ykun_wei@sina.com , yikunwei@zstu.edu.cn (Y. Wei), linzhe0122@zstu.edu.cn (Z. Lin). 

https://doi.org/10.1016/j.amc.2018.07.047 

0 096-30 03/© 2018 Published by Elsevier Inc. 

https://doi.org/10.1016/j.amc.2018.07.047
http://www.ScienceDirect.com
http://www.elsevier.com/locate/amc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.amc.2018.07.047&domain=pdf
mailto:ykun_wei@sina.com
mailto:yikunwei@zstu.edu.cn
mailto:linzhe0122@zstu.edu.cn
https://doi.org/10.1016/j.amc.2018.07.047


Y. Wei et al. / Applied Mathematics and Computation 339 (2018) 556–567 557 

numerical stability and the range of temperature variation are improved in the multi-distribution function approach, which 

has been varied by several benchmark studies [12–14] . Although the multi-distribution function approach possess the ob- 

vious advantages, a slice of limitations still take on. In general, multi-distribution function method must be assumed that 

the Mach number of the flow is small and the density varies slowly to get the correct macroscopic equations from lattice 

Boltzmann equation [13] . So theoretically the multi-distribution function approach can only be used to simulate compress- 

ible flows in the incompressible limit. When the multi-distribution function approach is used for incompressible flows, it 

must be viewed as an artificial compressible method [16] . To reduce or eliminate such shortcomings, the extending lattice 

Boltzmann models were proposed for th Boussinesq incompressible flows [15–24] . Zou and Hou have proposed a modified 

equilibrium distribution and a modified velocity to construct an Lattice Boltzmann equation which models time-independent 

isothemal incompressible flows with significantly reduced compressibility [25] , which significantly reduces the compressibil- 

ity and is more robust. 

Based on the above discussions, we mainly extend this incompressible model for thermal fluid flows by a modified equi- 

librium distribution function in this paper. A modified equilibrium distribution function is proposed in the present model 

for thermal dynamics equation. The present model is validated by the numerical simulation of the natural convection and 

Rayleigh – Bénard convection at a wide range of Rayleigh numbers, and Rayleigh – Taylor instability. Results of present 

model are in excellent agreement with that of previous LBM, DNS and theoretical prediction, which shows that the present 

model is also an efficient numerical method for natural convection, Rayleigh–Bénard convection, and Rayleigh–Taylor insta- 

bility. 

The rest of the paper is organized as follows: a novel lattice Boltzmann thermal model for incompressible flow will be 

detailedly described at first. After that, the detailed numerical study of the natural convection, Rayleigh –Benard convection 

and the two-dimensional Rayleigh–Taylor instability is presented and discussed in detail. The results are compared with 

previous LBM, the theoretical prediction and other computational results. A brief conclusion is given in final section. 

2. Coupled lattice Boltzmann model 

In this section, a novel coupled lattice Boltzmann model in two-dimensional space will be proposed in the following 

section. The approach can also be used to develop other models either in two space. The standard coupled lattice Boltzmann 

model bases on a square lattice. At first, a standard coupled lattice Boltzmann model for incompressible flows are briefly 

reviewed, and a novel coupled lattice Boltzmann model is then developed for incompressible fluid flows. 

2.1. Standard coupled lattice Boltzmann model 

The governing equations for the standard thermal energy distribution model are [18] : 

f i (x α + c iαδt, t + δt) − f i (x α, t) = −ω 1 

[
f i (x α, t) − f (eq ) 

i 
(x α, t) 

]
(1) 

g i (x α + c iαδt, t + δt) − g i (x α, t) = −ω 2 

[
g i (x α, t) − g (eq ) 

i 
(x α, t) 

]
(2) 

where f i is the density distribution function and g i is the temperature distribution function, f 
eq 
i 

is the equilibrium function 

for the density distribution function, g 
eq 
i 

is the equilibrium function for the temperature distribution function, c i α is the i th 

discretized velocity and ω is the relaxation parameter. For the D2Q9 model used in this study, c i α is chosen as following 

respectively: 

D2Q9:

c iα = 

δx 

δt 

[
0 1 0 −1 0 1 −1 −1 1 

0 0 1 0 −1 1 1 −1 −1 

]
, (3) 

The equilibrium function for the density distribution function is given as [18] : 

f eq 
i 

(x α, t) = w i ρ

{
1 + 

c iαu α

c 2 s 

+ 

u αu β

2 c 2 s 

(
c iαc iβ

c 2 s 

− δαβ

)}
(4) 

where c s is the speed of sound and w i is the weight coefficients. Parameters in D2Q9 is given as: 

c s = 

1 √ 

3 

δx 
δt 

, w i = 

⎧ ⎨ 

⎩ 

4 
9 

i = 0 

1 
9 

i = 1 ∼ 4 . 

1 
36 

i = 5 ∼ 8 

(5) 

The relation between the relaxation parameter ω 1 and the kinematic viscosity ν is: 

ν = c 2 s 

(
1 

ω 1 

− 1 

2 

)
δt. (6) 
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