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a b s t r a c t 

In this paper, we study the Steiner hyper-Wiener index of a graph, which is obtained from 

the standard hyper-Wiener index by replacing the classical graph distance with the Steiner 

distance. It is shown how this index is related to the Steiner Hosoya polynomial, which 

generalizes similar result for the standard hyper-Wiener index. Next, we show how the 

Steiner 3-hyper-Wiener index of a modular graph can be expressed by using the classical 

graph distances. As the main result, a method for computing this index for median graphs 

is developed. Our method makes computation of the Steiner 3-hyper-Wiener index much 

more efficient. Finally, the method is used to obtain the closed formulas for the Steiner 

3-Wiener index and the Steiner 3-hyper-Wiener index of grid graphs. 

© 2018 Elsevier Inc. All rights reserved. 

1. Introduction 

The Wiener index and the hyper-Wiener index are distance-based graph invariants, used as structure descriptors for pre- 

dicting physicochemical properties of organic compounds (often those significant for chemistry, pharmacology, agriculture, 

environment-protection etc.). Their history goes back to 1947, when H. Wiener used the distances in the molecular graphs 

of alkanes to calculate their boiling points [40] . This research has led to the Wiener index, which is defined as 

W (G ) = 

∑ 

{ u, v }⊆V (G ) 

d(u, v ) 

for any connected graph G . The origins and applications of the Wiener index are discussed in [36] , while some recent 

research related to this index can be found in [3,23–25] . 

The hyper-Wiener index was introduced in 1993 by Randi ́c [35] and has been extensively studied in many papers (see, 

for example, [6,20,43] ). Randi ́c’s original definition of the hyper-Wiener index was applicable just to trees and therefore, the 

hyper-Wiener index was later defined for any connected graph G [21] as 

W W (G ) = 

1 

2 

∑ 

{ u, v }⊆V (G ) 

d(u, v ) + 

1 

2 

∑ 

{ u, v }⊆V (G ) 

d(u, v ) 2 . 

The hyper-Wiener index is related to the Hosoya polynomial [14] , which is defined as 

H(G, x ) = 

∑ 

m ≥0 

d(G, m ) x m , 
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where d ( G , m ) is the number of unordered pairs of vertices at distance m . In [4] the following relation was shown: 

W W (G ) = H 

′ (G, 1) + 

1 

2 

H 

′′ (G, 1) . 

Distance-based topological indices were extensively investigated and also the edge versions were studied [39] . Many 

methods for computing these indices more efficiently were proposed and the most famous between them is the cut method 

[18] . This method is commonly used on benzenoid systems [8,38] or on partial cubes [7] , which constitute a large class of 

graphs with a lot of applications and includes, for example, many families of chemical graphs (benzenoid systems, trees, 

phenylenes, cyclic phenylenes, polyphenylenes). In particular, methods for computing the hyper-Wiener index and the edge- 

hyper-Wiener index were introduced in [17,37] . 

The Steiner distance of a graph, introduced by Chartrand et. al. in 1989 [5] , is a natural and nice generalization of the 

concept of classical graph distance. For a set S ⊆V ( G ), the Steiner distance d ( S ) among the vertices of S is the minimum size 

among all connected subgraphs whose vertex sets contain S . The Steiner distance in a graph was considered in many papers, 

for some relevant investigations see [2,11,33,34,41] and a survey paper [28] . On the other hand, the Steiner tree problem 

requires a tree T with minimum number of edges such that S ⊆V ( T ). In general, this problem is known to be NP-complete 

[15] . The Steiner distance and the Steiner tree problem have a lot of applications in real-word problems, for example in 

circuit layout, network design and in modeling of biomolecular structures [32] . 

If in the definition of the Wiener index the classical graph distance is replaced by the Steiner distance, the Steiner Wiener 

index is obtained [26] . In particular, if we replace the distances between pairs of vertices by the distances of all subsets with 

cardinality k , we obtain the Steiner k -Wiener index. It was shown in [13] that for some molecules the combination of the 

Steiner Wiener index and the Wiener index has even better correlation with the boiling points than the Wiener index. 

For some recent investigations on the Steiner Wiener index see [27,29,31] . However, a closely similar concept was already 

studied in the past under the name average Steiner distance [9,10] . Moreover, the Steiner degree distance [12,30] and other 

analogous generalizations of distance-based molecular descriptors (where the classical distance is replaced by the Steiner 

distance) were introduced [28] . 

In [26] the relation between the Steiner 3-Wiener index and the Wiener index was shown for trees and later for modular 

graphs [22] (see the definition in the preliminaries). In this paper, we first prove the relation between the Steiner hyper- 

Wiener index and the Steiner Hosoya polynomial. Next, we show how the Steiner 3-hyper-Wiener index of a modular graph 

can be expressed by using the classical graph distances. Furthermore, if G is a partial cube, we develop a cut method for 

computing the Steiner 3-hyper-Wiener index, which enables us to compute the index very efficiently and also to find the 

closed formulas for some families of graphs. Finally, our method is used to obtain the closed formulas for the Steiner 3- 

Wiener index and the Steiner 3-hyper-Wiener index of grid graphs. 

2. Preliminaries 

Unless stated otherwise, the graphs considered in this paper are simple and finite. For a graph G we say that | V ( G )| is the 

order of G and that | E ( G )| is its size . Moreover, we define d G ( x , y ) (or simply d ( x , y )) to be the usual shortest-path distance 

between vertices x , y ∈ V ( G ). 

For a connected graph G and an non-empty set S ⊆V ( G ), the Steiner distance among the vertices of S , denoted by d G ( S ) 

or simply by d ( S ), is the minimum size among all connected subgraphs whose vertex sets contain S . Note that if H is a 

connected subgraph of G such that S ⊆V ( H ) and | E(H) | = d(S) , then H is a tree. An S-Steiner tree or a Steiner tree for S is a 

subgraph T of G such that T is a tree and S ⊆V ( T ). Moreover, if T is a Steiner tree for S such that | E(T ) | = d(S) , then T is 

called a minimum Steiner tree for S . It is obvious that for a set S = { x, y } , x � = y , it holds d (S) = d (x, y ) . 

Let G be a connected graph and k a positive integer such that k ≤ | V ( G )|. The Steiner k-Wiener index of G , denoted by 

SW k ( G ), is defined as 

SW k (G ) = 

∑ 

S⊆V (G ) 
| S| = k 

d(S) . 

The Steiner k-hyper-Wiener index of G , denoted by SWW k ( G ), is defined as 

SW W k (G ) = 

1 

2 

∑ 

S⊆V (G ) 
| S| = k 

d(S) + 

1 

2 

∑ 

S⊆V (G ) 
| S| = k 

d(S) 2 . 

The Steiner k-Hosoya polynomial of G , denoted by SH k ( G , x ), is defined as 

SH k (G, x ) = 

∑ 

m ≥0 

d k (G, m ) x m , 

where d k ( G , m ) denotes the number of subsets S ⊆V ( G ) with | S| = k and d(S) = m . 

Two edges e 1 = u 1 v 1 and e 2 = u 2 v 2 of a connected graph G are in relation �, e 1 �e 2 , if 

d G (u 1 , u 2 ) + d G (v 1 , v 2 ) � = d G (u 1 , v 2 ) + d G (u 1 , v 2 ) . 
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