On the vertex partitions of sparse graphs into an independent vertex set and a forest with bounded maximum degree ${ }^{\text {r }}$

Min Chen*, Weiqiang Yu, Weifan Wang
Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China

A R T I C L E I N F O

Keywords:

Vertex partition
Maximum average degree
Forest
Girth

Abstract

Given a graph $G=(V, E)$, if its vertex set $V(G)$ can be partitioned into two non-empty subsets V_{1} and V_{2} such that $G\left[V_{1}\right]$ is edgeless and $G\left[V_{2}\right]$ is a graph with maximum degree at most k, then we say that G admits an $\left(I, \Delta_{k}\right)$-partition. A similar definition can be given for the notation (I, F_{k})-partition if $G\left[V_{2}\right]$ is a forest with maximum degree at most k.

The maximum average degree of G is defined to be $\operatorname{mad}(G)=\max \left\{\frac{2|E(H)|}{|V(H)|}: H \subseteq G\right\}$. Borodin and Kostochka (2014) proved that every graph G with $\operatorname{mad}(G) \leq \frac{8}{3}$ admits an (I, Δ_{2})-partition and every graph G with $\operatorname{mad}(G) \leq \frac{14}{5}$ admits an $\left(I, \Delta_{4}\right)$-partition. In this paper, we obtain a strengthening result by showing that for any $k \geq 2$, every graph G with $\operatorname{mad}(G) \leq 2+\frac{k}{k+1}$ admits an $\left(I, F_{k}\right)$-partition. As a corollary, every planar graph with girth at least 7 admits an (I, F_{4})-partition and every planar graph with girth at least 8 admits an (I, F_{2})-partition. The later result is best possible since neither girth condition nor the class of F_{2} can be further improved.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Throughout this paper, all graphs considered are finite, simple and undirected. Let $G=(V, E)$ be a graph. Denote m classes by graphs G_{1}, \ldots, G_{m}. Call a vertex partition of G a $\left(G_{1}, \ldots, G_{m}\right)$-partition if $V(G)$ can be partitioned into m sets V_{1}, \ldots, V_{m} such that for each $1 \leq l \leq m$, the subgraph $G\left[V_{l}\right]$ belongs to G_{l}. For simplicity, we denote the class of forests, the class of independent sets, the class of graphs with maximum degree k, and the class of forests with maximum degree k by using notation F, I, Δ_{k} and F_{k}, respectively. Let $g(G)$ denote the girth of G which is the length of a shortest cycle in G.

In recent years, several papers concerning vertex partitions of graphs with some restrictions on sparseness or girth condition have appeared. The maximum average degree of G is defined to be $\operatorname{mad}(G)=\max \left\{\frac{2|E(H)|}{|V(H)|}: H \subseteq G\right\}$. It is used to measure the sparseness of G. Kurek and Ruciński [10] defined that graphs with low maximum average degree are said to be globally sparse.

The following lemma is folklore and it connects the relationship between the girth of a planar graph and maximum average degree.

Lemma 1. If G is a connected planar graph, then $\operatorname{mad}(G)<\frac{2 g(G)}{g(G)-2}$.

[^0]The famous four-color theorem [1,2] guarantees that every planar graph has an (I, I, I, I)-partition. By investigating acyclic coloring problems, Borodin [3] showed that every planar graph has an (I, F, F)-partition. At the same time, in [4], Borodin and Glebov showed that every planar graph with girth $g \geq 5$ has an (I,F)-partition. Moreover, Borodin et al. [5] constructed a planar graph with girth $g=6$ having no (I, Δ_{k})-partition for any k. Naturally, it seems to be interesting to study (I, Δ_{k})partition (or (I, F_{k})-partition) problems for planar graphs with girth $g \geq 7$. Notice that $\Delta_{1}=F_{1}$.

Borodin and Kostochka [6], in 2011, proved that every graph G satisfying $\operatorname{mad}(G)<\frac{12}{5}$ admits an (I, F_{1})-partition. By applying Lemma 1 , this implies that every planar graph with girth $g \geq 12$ admits an (I, F_{1})-partition. This has been later improved by Kim et at. [9] in which they showed that every planar graph with girth $g \geq 11$ admits an (I, F_{1})-partition. Since there exist non-(I, F_{1})-partitioning planar graphs with girth $g=9$, it is worthy of thinking the (I, F_{1})-partition problems of planar graphs with girth $g=10$.

On the other hand, Borodin and Kostochka [7] obtained that every graph G satisfying $\operatorname{mad}(G) \leq \frac{8}{3}$ admits an (I, $\left.\Delta_{2}\right)$ partition and every graph G satisfying $\operatorname{mad}(G) \leq \frac{14}{5}$ admits an $\left(I, \Delta_{4}\right)$-partition. Again, by Lemma 1 , this yields that every planar graph with girth $g \geq 7$ admits an (I, Δ_{4})-partition and every planar graph with girth $g \geq 8$ admits an (I, Δ_{2})-partition. Montassier and Ochem [11] proved that deciding if a planar graph of girth $g \geq 7$ has an (I, Δ_{2})-partition is NP-complete. Recently, Dross et al. [8] considered (I, F_{k})-partition problems of the same family of planar graphs. They showed that every planar graph with girth $g \geq 7$ admits an (I, F_{5})-partition and every planar graph with girth $g \geq 8$ admits an (I, F_{3})-partition.

In this paper, we prove the following:
Theorem 1. For $k \geq 2$, every graph G with $\operatorname{mad}(G) \leq 2+\frac{k}{k+1}$ admits an $\left(I, F_{k}\right)$-partition.
Theorem 1 together with Lemma 1 yields Corollary 1.
Corollary 1. Each planar graph G admits:
(1) an (I, F_{4})-partition if $g(G) \geq 7$;
(2) an (I, F_{2})-partition if $g(G) \geq 8$.

Corollary 1 is a common strengthening of some previous results in [7,8]. Moreover, the second result of Corollary 1 is best possible since neither girth condition nor the class of F_{2} can be improved. Still, we suspect that Corollary 1 (1) can be further strengthened.

In fact, to derive Theorem 1, we will need a more precise statement. For a given graph G and vertex subset $S \subseteq V(G)$, we define

$$
\begin{equation*}
\rho(S, G):=\left(1+\frac{k}{2 k+2}\right)|S|-|E(G[S])| . \tag{1}
\end{equation*}
$$

By definition, we see that $\operatorname{mad}(G) \leq 2+\frac{k}{k+1}$ is equivalent to the assumption that $\rho(S, G) \geq 0$ for each $S \subseteq V(G)$. Our main result is the following which is stronger than Theorem 1.

Theorem 2. For $k \geq 2$, if a graph G satisfies that

$$
\begin{equation*}
\rho(S, G)>-\frac{1}{k+1} \quad \text { for every } S \subseteq V(G) \tag{2}
\end{equation*}
$$

then G admits an $\left(I, F_{k}\right)$-partition.

2. Proof of Theorem 2

2.1. Some basic notation

Let $G=(V, E)$ be a graph. For a vertex $v \in V$, the degree of v is denoted by $d_{G}(v)$. Call v an m-vertex, or an m^{+}-vertex, or an m^{-}-vertex if $d_{G}(v)=m$, or $d_{G}(v) \geq m$, or $d_{G}(v) \leq m$. Let $V_{p}(G)$ denote the set of p-vertices in G. A triangle is called special if it contains at least two 2 -vertices. Meanwhile, these kinds of 2 -vertices are both called special. By a host vertex we mean a 3^{+}-vertex $v \in V(G)$ which is incident to at least one special triangle. If a host vertex is incident to exactly $i+1$ special triangles, then it is said to be an i-host vertex. Obviously, an i-host vertex has degree at least $2 i+2$. Furthermore, we denote by G^{*} the graph which is obtained from G by deleting all special 2 -vertices and all degree 1^{-}vertices.

Definition 1. A graph H is smaller than a graph G if
(i) $\left|V_{2^{+}}\left(H^{*}\right)\right|<\left|V_{2^{+}}\left(G^{*}\right)\right|$, or if
(ii) $\left|V_{2^{+}}\left(H^{*}\right)\right|=\left|V_{2^{+}}\left(G^{*}\right)\right|$ and $\left|V\left(H^{*}\right)\right|<\left|V\left(G^{*}\right)\right|$, or if
(iii) $\left|V_{2^{+}}\left(H^{*}\right)\right|=\left|V_{2^{+}}\left(G^{*}\right)\right|,\left|V\left(H^{*}\right)\right|=\left|V\left(G^{*}\right)\right|$ and $\left|E\left(H^{*}\right)\right|<\left|E\left(G^{*}\right)\right|$, or if
(iv) $\left|V_{2^{+}}\left(H^{*}\right)\right|=\left|V_{2^{+}}\left(G^{*}\right)\right|,\left|V\left(H^{*}\right)\right|=\left|V\left(G^{*}\right)\right|,\left|E\left(H^{*}\right)\right|=\left|E\left(G^{*}\right)\right|$, and $|V(H)|<|V(G)|$.

https://daneshyari.com/en/article/8901139

Download Persian Version:

https://daneshyari.com/article/8901139

Daneshyari.com

[^0]: ㅎ Research supported by NSFC (Nos. 11471293, 11771402).

 * Corresponding author.

 E-mail addresses: chenmin@zjnu.cn (M. Chen), wwf@zjnu.cn (W. Wang).

