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a b s t r a c t 

We study the optimal control of systems for a class of nonlinear hemivariational inequal- 

ities which are in the form of evolutionary inclusions involving Clarke’s generalized gra- 

dient. The control variables are introduced both in the generalized gradient and in the 

source terms. We first establish the existence of weak solutions to nonlinear inclusions 

and prove the upper semicontinuity property of their solution sets. Then, we present the 

minimization problem and show the existence of optimal admissible state-control pairs. 

Finally, some examples of our abstract results which appear in applications are discussed. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

In this paper we consider optimal control problems of systems described by an evolutionary hemivariational inequality. 

Such an inequality is formulated as the evolutionary inclusion of first order with the multivalued Clarke subdifferential term. 

The inclusion is considered in the framework of evolution triple of spaces and the model involves two control variables, one 

is a distributed parameter control and the second one appears in the multivalued subdifferential term. 

Our main results concern the upper semicontinuity of the solution set to the problem and the existence of optimal 

admissible state-control pairs for the optimal control problem with Lagrangian cost functional. 

There has been extensive study on optimal control of evolution problems. For instance, the existence and approximation 

of optimal solutions and the necessary optimality conditions have been studied by Lions [1] , Tröltzsch [2] for differential 

equations, and by Barbu [3] and Tiba [4] for variational inequalities. Also, the optimal control problems governed by dif- 

ferential inclusions of subdifferential type were studied by Tolstonogov [5] . Recently, the existence and convergence of the 

optimal control for quasi-variational inequalities have been studied by Khana and Samab [6] , whereas the optimal control of 

nonlinear rate-independent evolution process has been investigated by Rindler [7] . As concerns control problems for hemi- 

variational inequalities, they have been treated in the stationary case by Panagiotopoulos [8] , Miettinen and Haslinger [9] , 

Haslinger and Panagiotopoulos [10,11] , Denkowski and Migórski [12] . As for the evolutionary case, these problems have been 

studied by Migórski and Ochal [13] , and Park and Jeong [14] . Moreover, their application to piezoelectric frictional contact 

models has been considered recently by Denkowski, Migórski and Ochal [15] . However, optimal control problems for dou- 

bly nonlinear inclusions with nonmonotone perturbations, cf. (1) below, have not been considered in the literature. In the 

present paper we exploit the very recent results in [16–18] on the existence of solutions to hemivariational inequality with 

doubly nonlinear operators. 
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The paper is organized as follows. First, in Section 2 we provide the motivation for our study. Section 3 is concerned 

with the preliminaries and hypotheses to hemivariational inequality problems. Then, in Section 4 we establish the existence 

results for these problems and discuss the properties of their solution sets. On the basis of Section 4 , in Section 5 we study 

the optimal control problem and show the existence of optimal admissible state-control pairs. Finally, in Section 6 , some 

examples of our abstract results are provided. 

2. Motivation 

The motivation for our study comes from the nonconvex superpotential problems in Mechanics and Engineering Sciences. 

Their variational formulations are hemivariational inequalities which were introduced by P.D. Panagiotopoulos in 1981 and 

they express the principle of virtual work in inequality form. The hemivariational inequality considered in the paper can be 

formulated in the form of the following evolutionary inclusion: ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

v ′ (t) + A (t , y (t )) + g(t) = f (t) + C(t ) u (t ) a.e. t ∈ (0 , T ) , 

v (x, t) ∈ 

̂ β(x, y (x, t)) a.e. (x, t) ∈ � × (0 , T ) , 

g(x, t) ∈ ̂

 g (x, t, w (x, t) , y (x, t)) a.e. (x, t) ∈ � × (0 , T ) , 

v (0) = v 0 , 

(1) 

where ̂ β and 

̂ g represent multivalued lower order terms, and u and w denote the control variables. More precisely, ̂ β is 

a maximal monotone operator induced by a nondecreasing function which has a jump at some point while ̂ g denotes the 

Clarke generalized gradient of a locally Lipschitz function which describes the multivalued and nonmonotone relations in 

the interior of the domain �. 

System (1) arises in various physical models for distributed parameter control problems with phase change. Here, our 

study is motivated by a two-phase Stefan problem which describes the heat transfer in metal melting and solidification 

process. The enthalpy formulation of this problem can be described by the equation 

∂e (y ) 

∂t 
+ div q = f in � × (0 , T ) , 

where e ( y ) represents the enthalpy per unit volume, q is the heat flux vector, f describes the density of heat sources in �, 

and y = y (x, t) denotes the temperature at point x ∈ � and time t ∈ (0, T ). From the generalized Fourier heat conduction law 

q = −k (y ) ∇y in �× (0, T ), where k ( y ) is the thermal conductivity depending on the temperature, it follows that: 

∂e (y ) 

∂t 
− div (k (y ) ∇y ) = f in � × (0 , T ) . (2) 

Enthalpy formulation (2) is the energy conservation equation that treats the solid phase, liquid phase and the solid-liquid 

interphase as a whole. On the interphase, the latent heat of solidification is released (or absorbed for melting) so that the 

energy has a jump across it, which affects e ( y ) being multivalued at the solidification temperature. Note that either in liquid 

or solid phase, since no phase change occurs, the model is described by the parabolic heat conduction equation 

y ′ (t) − div (k (y ) ∇y ) = f in � × (0 , T ) . (3) 

In this paper, it is supposed that f = f 1 + f 2 , where f 2 is given and f 1 is a known function of the temperature in the form 

of 

− f 1 (x, t) ∈ ∂ j(x, t, w (x, t) , y (x, t)) a.e. (x, t) ∈ � × (0 , T ) , (4) 

where ∂ j ( x , t , η, ξ ) denotes the generalized gradient of a locally Lipschitz function j ( x , t , η, ξ ) with respect to its last variable. 

The multivalued function ∂ j(x, t, η, ·) : R → 2 R is generally nonmonotone and may include vertical jumps. In the physicist 

language, it means that the law is characterized by the generalized gradient of a nonsmooth potential j ( x , t , η, · ). For more 

information on the Clarke generalized gradient, we refer to [19] . 

The variational formulation of (2) with condition (4) leads to a hemivariational inequality whose corresponding control 

problem can be formulated as in (1) . Note that the variational formulation of the simpler Eq. (3) with (4) leads to an 

optimal control problem for a parabolic hemivariational inequality. This problem has been studied by Migórski and Ochal 

in [13] and applied to nonmonotone and nonconvex interior semipermeability problems. Their monotone counterparts are 

described by variational inequalities, which have been studied by Duvaut and Lions in [20] with j ( x , t , η, · ) being a proper, 

lower semicontinuous and convex function, which implies that ∂ j ( x , t , η, · ) is a maximal monotone mapping. Note also that 

the monotone and nonmonotone relations as in (4) could be also considered on the boundary of a domain which lead to 

boundary variational or boundary hemivariational inequality problems, respectively. 

3. Notations and preliminaries 

For a Banach space X , we denote by ‖ · ‖ X the norm in X , by 〈 · , · 〉 X the duality pairing between X and its dual X 

∗ and by 

w - X the space X equipped with its weak topology. Let �0 ( X ) stand for the set of proper, convex and lower semicontinuous 
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