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a b s t r a c t

With the appearance of approach named ‘‘robust alignment by sparse and low-rank
decomposition’’ (RASL), a number of linearly correlated images can be accurately and
robustly aligned despite significant corruptions and occlusions. It has been discovered that
this aligning task can be characterized as a sequence of 3-block convex minimization
problems which can be solved efficiently by the accelerated proximal gradient method
(APG), or alternatively, by the directly extended alternating directionmethod ofmultipliers
(ADMM). However, the directly extended ADMM may diverge although it often performs
well in numerical computations. Ideally, one should find an algorithm which can have
both theoretical guarantee and superior numerical efficiency over the directly extended
ADMM. We achieve this goal by using the intelligent symmetric Gauss–Seidel iteration
based ADMM (sGS-ADMM) which only needs to update one of the variables twice, but
surprisingly, it leads to the desired convergence to be guaranteed. The convergence of sGS-
ADMM can be followed directly by relating it to the classical 2-block ADMM and with
a couple of specially designed semi-proximal terms. Beyond this, we also add a rank-
correction term to the model with the purpose of deriving the alignment results with
higher accuracy. The numerical experiments over a wide range of realistic misalignments
demonstrate that sGS-ADMM is at least two times faster than RASL and APG for the vast
majority of the tested problems.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

In the past decades, the increasing popularity of digital cameras has led to a dramatic increase in the amount of visual
data. Such data always contains significant illumination variations, partial occlusions, or even misalignments. Particularly,
the last difficulty poses steep challenges to existing vision algorithms for many image analyses such as face recognition, and
image classification. Therefore, how to design reliable and efficient alignment algorithms for a large amount of images is an
urgent and fundamental problem in computer vision.

In the past decade, a lot of work has been done toward aligning images of objects of interest to a fixed canonical template.
To seek an alignment, the congealing algorithm [1] minimizes the sum of the pixel-stack entropies at each location in the
batch of the aligned images. However, it requires that each row of the matrix be nearly constant if these aligned images are
stacked as the column of a large matrix. The least squares congealing approach [2] minimizes the sum of squared distances
between image pairs but it demands that each column be nearly constant. However, if the constant conditions are not
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satisfied, the matrix of the aligned images might have an unknown rank rather than the desired one. The method in [3]
uses a log-determinant cost function to be a smooth surrogate for the rank function, and the EM algorithm [4] optimizes a
low rank objective function directlywith respect to domain transformations drawn from a known group. However, as shown
in [5] that, amajor drawback of these approaches is that they cannot simultaneously handle the large illumination variations
and gross pixel corruptions or partial occlusions that often occur in real images.

Unlike the conventional techniques, the novel approach named ‘‘robust alignment by sparse and low-rank decomposi-
tion’’ (RASL) [5] can seek an optimal set of image domain transformations such that the matrix of transformed images can
be decomposed as the sum of a sparse matrix of errors and a low-rank matrix of recovered aligned images. More precisely,
suppose that we are given nwell-aligned and linearly-correlated grayscale images I01 ; . . . ; I0n ∈ Rw×h of an object or a scene,
where w and h are the width and length of each image, respectively. Denote V : Rw×h

→ Rm be the operator that selects
m-pixel region from an image and stacks it as a vector and set X = [V(I01 ), . . . ,V(I

0
n )] ∈ Rm×n, then X is approximately

low-rank. However, suppose that there are n newly arrived images I1; I2; . . . ; In of the same object but misaligned with
respect to each other. Then, it has been shown that there exist domain transformations τ1, . . . , τn such that the transformed
images I1 ◦ τ1, . . . , In ◦ τn are well aligned at the pixel level, or, equivalently, the matrix

D ◦ τ = [V(I1 ◦ τ1), . . . ,V(In ◦ τn)]

has low-rank, where D = [V(I1), . . . ,V(In)] denotes the given images, and τ presents the set of the sequence τ1, . . . , τn.
Therefore, the batch images alignment problem can be expressed to find the transformations τ such that D◦τ has low-rank,
which amounts to the following minimization problem

min
τ ,X

{
Rank(X), s.t. D ◦ τ = X

}
. (1.1)

However, in practice, the low-rank structure of the aligned images is usually violated due to the partial occlusions or
corruptions. Suppose that the images {Ii ◦ τi − ei}ni=1 are well aligned with a small error ei corresponding to image Ii, then
the formulation (1.1) can be modified correspondingly as

min
τ ,X,E

{
Rank(X) + λ∥E∥0, s.t. D ◦ τ = X + E

}
, (1.2)

where ∥E∥0 denotes the number of non-zero entries in E andλ > 0 is a parameter that trades off both terms forminimization.
However, the rank and l0-norm minimization is combinatorial and known to be NP-hard, and generally computationally
intractable. Therefore, convex relaxation is often used to make the minimization tractable.

The most popular choice is to replace the ‘‘rank’’ term with the nuclear norm, and replace the ℓ0-norm with the ℓ1-
norm [6], which yields the following convex minimization problem

min
τ ,X,E

{
∥X∥∗ + λ∥E∥1, s.t. D ◦ τ = X + E

}
, (1.3)

where ∥ · ∥∗ is the so-called nuclear norm (also known as Ky Fan norm) defined by the sum of all singular values, and ∥ · ∥1
is defined as the sum of absolute values of all entries. It is worth noting that the objective function in model (1.3) is convex
and separable, but the constraint is nonlinear, which leads to the main difficulty of minimization. We assume that G is
some p-parameter group and identify τ ∈ Rp×n with the parameterizations of all of the transformations. To resolve this
dilemma, the popular technique in [5,7] is to linearize the term D ◦ τ at τ (i) as D ◦ (τ (i)

+ ∆τ ) ≈ D ◦ τ (i)
+

∑n
j=1Jj∆τj, where

∆τ = (∆τ1, . . . , ∆τn) ∈ Rp×n and Jj ∈ Rm×p is the Jacobian of the jth image with respect to the transformation parameter
τj, i.e.,

Jj =
∂

∂ζ

( V(Ij ◦ ζ )
∥V(Ij ◦ ζ )∥2

)⏐⏐⏐
ζ=τj

, j = 1, . . . , n. (1.4)

Therefore, solving (1.3) leads to solving a sequence of the following convex minimization problem

min
X,E,∆τ

{
∥X∥∗ + λ∥E∥1, s.t. D ◦ τ (i)

+

n∑
j=1

Jj∆τj = X + E
}
. (1.5)

This model (1.5) is convex, separable and non-smooth, so it can be solved efficiently. When the solution ∆τ̄ (i) is derived, the
domain transformation τ is updated immediately as τ (i+1)

= τ (i)
+ ∆τ̄ (i).

The resulting model (1.5) actually has three separable structures in both objective function and constraint, and hence it
belongs to the framework of the alternating directionmethod ofmultipliers (ADMM). For solving (1.5), the original solver [8]
penalized the constraint as an unconstrainedminimization problemand then solved accordingly by the accelerated proximal
gradient (APG) algorithm. Although the implemented APG algorithm performs efficiently, it only solves an approximated
variant, not the original model (1.5) itself. To solve (1.5), Peng et al. [5] directly extended the classical 2-block ADMM to the
3-block case with X → ∆τ → E Gauss–Seidel order which has been observed to perform well in numerical computations.
However, it was shown by Chen et al. [9] that in contrast to the classic 2-block ADMM, the directly extended 3-block ADMM
may diverge theoretically. Ideally, one should find a convergent variant which is at least as efficient as the directly extended
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