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a b s t r a c t

So far, many regressionworks have been implemented by using linear regressionmethods.
Although more accurate predictions results could be obtained, polynomial regression is
not used as much as compared to linear regression in real applications due to occur-
rence of coefficient explosion. To overcome this problem, two regression algorithms using
Chebyshev polynomials of class 2 based on cascade regression and feature selection are
proposed in this paper. In the experimental part, three separate experiments including
function interpolation and real-case regression were conducted on three datasets to test
the proposed algorithms. As shown by the experimental results, the proposed algorithms
performed better than other regression methods in terms of both accuracy and processing
time.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Among various quantitative predictionmethods, regression is one of the commonly usedmethods.With the contributions
brought by mathematicians, a series of popular regression tools such as linear regression, polynomial regression and rigid
regression etc. have been adopted and among them polynomials regression could be treated as one of the most accurate
method [1]. In all the polynomials regression methods, Chebyshev polynomials regression is becoming an outstanding one
for its fitting capabilities. However, polynomials (e.g. Chebyshev polynomials) are difficult to be employed in multi-variable
regression case in the current stage. In this paper, two techniques including the feature selection and cascade regression are
considered to improve the performance of multi-variable Chebyshev polynomials regression.

According to Hoel P.G. [1], Chebyshev polynomials regression was firstly adopted for single-variable function interpo-
lation in 1966. Based on the theory of Chebyshev polynomials of class 2 (CP-2), Chebyshev polynomials regression has
some eminent properties [1–4], such as high approximation capability with low polynomials and weighted orthogonality.
Especially, in the case of analytical understanding, Chebyshev polynomials could be adopted to ease the Runge phenomenon.
Based on this advantage, we could try to use the high order of Chebyshev polynomials to deal with a regression problem. And
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this is the main reason for us to discuss the application of Chebyshev polynomials here. However, after the study [1], there
were few studies or applications using Chebyshev polynomials regression [5–12]. During the same period, most researchers
focused on linear regression (e.g. [13,14]) because linear regression methods could be easily applied and transplanted into
the case of multi-variable regression. In order to employ the CP-2 for multi-variable regression, Zhang Y. et al. [8] combined
Bernstein polynomials with CP-2 to achieve a multi-variable Chebyshev polynomials regression algorithm and defined a
cross-validation scheme to prune the redundant polynomial. Although a big contribution was obtained in their study, this
hybrid regression method still had two limitations. Firstly, the relationship between the number of regressing coefficients
N and the number of regressed attributes t is exponential (i.e. N = nt , where n is the number of polynomials). Therefore,
N grows quickly with the increase of the number of regressed variables, which is known as coefficient explosion. It could
be ascribed to the large number of different combinations of the serial number of variables and polynomials. Secondly, the
accuracy of their algorithm relied mainly on the random grouped result. Compared with the second limitation, coefficient
explosion is more vital because the application of polynomials regression is severely restricted by this issue. In this paper,
different strategies are proposed to analyze and solve the problem of coefficient explosion in the case of multi-variable
regression problem.

To overcome the coefficient explosion, the main purpose of our analysis is to reduce the number of redundant variables.
As far as reducing the redundant variables are concerned, two ideas could be addressed. On one hand, each variable could
be treated as an individual and contribute to the predicted value separately. Therefore, a variable could be removed from
the regression variable set when it is unrelated to the predicted value. Based on this idea, feature selection algorithm seems
to be a suitable choice and is designed as an important preprocessing algorithm and treated as a practical way to reduce
the complexity of input set. There are some selection algorithms including correlation-based methods [13], uninformative
variable elimination [15], successive projections algorithm [16] and mutual-information-based selection [17–20]. Among
them, mutual-information-based selection algorithm (MIFS, e.g. [17]) is more attractive than others because not only the
knowledge about information entropy but also feature relevance and redundancy are considered. Especially for MIFS-CR
proposedbyWangZ. et al. [20], based on the relevance between redundant andoriginal variable set, the relationship between
redundant and selected variable setwas the focus in their analysis. In our paper, as a preprocessing step,MIFS-CR is combined
with CP-2 to build a new regressionmethod. On the other hand, a scheme named cascade regression has become a hot topic.
It has been used in some image processing applications, such as face alignment [21–26] and facial object localization [27].
The basic idea of cascade regression is obtaining the accurate prediction by accumulating the outputs that are obtained from
several regression steps. In details, through a nonlinear way, each input of the regression step was linked to the residual
that is generated from the former regression step. According to the basic idea of cascade regression, a proper nonlinear
transformation (e.g. SIFT in [24]) could be treated as a key point. This assumption is valid for two main reasons. Firstly, the
nonlinear transformation could be employed to reduce the variable that can contribute to the prediction. Secondly, according
to the theory of matrices, the residual error of prediction could not be directly represented by the same matrix. Inspired by
partial least squares regression (PLSR) [28,29] that could be treated as a cascade regressionmodel, a novel cascade Chebyshev
polynomials regression method named partial Chebyshev polynomials regression method (PCPR) is designed in this paper.
In details, during each iteration of PCPR, the main components will be extracted from the combination of residual input and
residual output and then used to drive a Chebyshev polynomials regression tool. In this way, the number of components
used for one regression tool could be controlled and the redundant variable could be neglected. The main contributions of
this paper are concluded as:

A. As a preprocessing step, the feature selection algorithm (i.e. MIFS-CR) proposed by Z. Wang et al. [20] is adopted to
reduce the number of variables before the selected variables are employed as the input of Chebyshev polynomials
regression method. We call this combined scheme algorithm as MIFS-CR+CP-2. In this case, each variable is treated as
an individual and the useful one is picked for the regression.

B. As far as the cascade regression is concerned, a novel model named partial Chebyshev polynomials regression (PCPR)
is proposed in this paper. In terms of PCPR, the idea of cascade regression, Chebyshev polynomials and variable
pruning are considered and combined as an effective regression model. From the perspective of PCPR, all variables
are considered as a unified set and the principle components projection is used as the nonlinear transformation.

In the experiment part, three experiments were conducted. In the first experiment, a family of functions with a different
number of variables was adopted to present the superiority of PCPR. In the second experiment, two datasets were employed
to show thehigh accuracy of the feature-selection-basedChebyshevpolynomials regressionmethod. In the third experiment,
based on the same scheme of two algorithms, different polynomials (e.g. Hermit, Gegenbauer, etc.) were adopted to evaluate
the performance of our selected polynomials. As a result, the superiority of two algorithms under different conditions was
demonstrated. Ononehand, PCPR is the superior toolwhen each variablemakes equal contribution to the prediction problem
(e.g. function interpolation). On the other hand, compared with PCPR, feature-selection-based Chebyshev polynomials
regressionmodel shows better performancewhen the number of useful variables is limited in a prediction problem (e.g. real
prediction cases).

The paper is organized into following parts: Section 2 introduces the theory of multi-variable Chebyshev polynomials
regression algorithm and proposes some details of our method subsequently. Section 3 provides some information about
experiments and discusses the results. Section 4 ends up the article with conclusion.
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