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a b s t r a c t

We derive the optimal heterogeneous, homogeneous and homogeneous unbiased estima-
tors of the coefficient vector in a linear regression model under the extended balanced
loss function of Shalabh et al. (2009). Risk functions and optimal predictors of the new
estimators are evaluated and comparisons among the estimators are made with respect
to the extended balanced loss function. Some of the theoretical results are illustrated by
a numerical example. Moreover, the behavior of the proposed estimators is studied via a
Monte-Carlo experiment in the sense of mean square error.
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1. Introduction

The ordinary least squares (OLS) estimator is the best linear unbiased estimator of regression parameters in a linear
regression model. We can improve upon the variability of an estimator of a regression coefficient when the linearity and
unbiasedness criteria are ignored. So, the minimum homogeneous and the minimum heterogeneous mean squared error
estimators are introduced and discussed by Theil [1], Toutenburg [2], Rao [3], Theil [4, pp.125], Rao [5, pp. 305], Rao
and Toutenburg [6, pp. 89–96] and Schaffrin [7–9] among others. Then, the minimum homogeneous and the minimum
heterogeneous prediction mean squared error predictors related to the minimum homogeneous and the minimum het-
erogeneous mean squared error estimators are introduced and examined by Rao and Toutenburg [6, pp.159-164], Bibby
and Toutenburg [10, pp. 76], Toutenburg [2,11–13], Goldberger [14] and Toutenburg and Trenkler [15] among others.
Since the goodness of the fitted model criterion is quite often ignored where it is used to investigate the performance of
estimators, Zellner [16] has introduced the balanced loss function (ZBLF) which focuses on estimates around true parameter
and goodness of fit of model. Further, Shalabh [17] has presented a predictive loss function (PLF) that not only incorporates
the ZBLF as its particular case but also measures the correlation between the goodness of fit of the model and concentration
of estimates around the true parameter. The ZBLF has received considerable attention in the literature under different
setups, for example, Rodrigues and Zellner [18], Giles et al. [19], Ohtani et al. [20], Ohtani [21,22] and Gruber [23]; see also
Toutenburg and Shalabh [24] for the application of the ZBLF in some other areas of linearmodels. Appreciating the popularity
of the ZBLF, Shalabh et al. [25] have extended it further and presented a general loss function, called an extended balanced
loss function (EBLF), to evaluate the performance of the OLS and the Stein-rule estimation (SRE).

As a consequence, it appears reasonable to extend the idea of finding optimal estimators according to the general loss
function, EBLF. So, we present some fundamental concepts and loss functions in Section 2. Then, in Section 3, we introduce
and derive the optimal EBLF estimators and predictors and discuss their performances. In addition, we perform a simulation
study and a numerical example in Section 3.
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2. Linear regression model with some concepts and the loss functions

Let us consider the following linear model:

y = Xβ + ε, (1)

where y is an n × 1 vector of responses, X is an n × p full column rank matrix of non-stochastic predetermined regressors,
β is a p × 1 vector of unknown parameters, and ε is an n × 1 vector of iid(0, σ 2) random errors.

The OLS estimator of β in model (1) is

β̂ = (X ′X)−1X ′y. (2)

This estimator is a widely used technique for estimating the linear regression models. The main reason for focusing on the
OLS estimator is because it is unbiased and has the minimum variance among all linear unbiased estimators. However, if
we ignore unbiasedness and consider biased estimators, we can propose improved estimators by employing matrix mean
squared error (MSE) criterion.

In this context, the minimumMSE estimator is given by Theil [1]

β∗
=

β ′X ′y
σ 2 + β ′X ′Xβ

β = ββ ′X ′(Xββ ′X ′
+ σ 2I)−1y. (3)

The difficulty with β∗ is that it is not an estimator indeed as it contains unknown parameters β and σ 2. In order to make it
operational, Rao [5] suggested to insert prior values of β and σ 2 in β∗, while Farebrother [26] proposed to replace β and σ 2

by β̂ and s2 respectively, where

s2 =
1

n − p
(y − X β̂)′(y − X β̂). (4)

So, the operational version of the optimal estimator β∗ is obtained as

β̂∗
=

β̂ ′X ′y

s2 + β̂ ′X ′X β̂
β̂ = ρ̂β̂ (5)

where ρ̂ =
β̂ ′X ′y

s2+β̂ ′X ′X β̂
. Dwivedi and Srivastava [27] worked out the large sample properties of β̂∗.

As another improved estimator, Stahlecker and Trenkler [28] proposed to utilize prior information for estimating β with
respect to MSE criterion in which the estimator is given as

βopt = ρβ + (1 − ρ)c (6)

where ρ =
β ′X ′y

σ2+β ′X ′Xβ
and c is a n × 1 vector of values which reflects our a prior belief on β , which could be some past

values of β or even a guess about β . The estimator βopt is also a minimum MSE estimator and may be called as the best
heterogeneous linear estimator of β . However, βopt is not of any practical utility despite its optimality. Therefore, Stahlecker
and Trenkler [28] proposed to replace β and σ 2 by β̂ and s2 respectively as done by Farebrother [26] for β∗. This gives the
operational variant of βopt as

β̂ST = ρ̂β̂ + (1 − ρ̂)c. (7)

The estimator β̂ST relies on the prior information. This prior information may be of two types:

(i) Some past values on β , and/or
(ii) A guess about β based on past experience.

In both cases, the prior vector c may or may not conform to the current sample information. So, a possible remedy is to take
c as a stochastic vector instead of a fixed one. A simple choice is

β =
l′β̂
l′l

=
1
p

p∑
i=1

β̂i, where l =

⎛⎜⎜⎝
1
1
...

1

⎞⎟⎟⎠
p×1

= 1p. (8)

Shrinking β̂ST towards the mean vector βl would be more useful than shrinking it towards the fixed vector c when ρ̂ → 0.
This leads to the estimator

β̂TS = ρ̂β̂ + (1 − ρ̂)βl. (9)
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