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a b s t r a c t

This work presents a new integral formula for the variation of matrix elastic energy caused
by the inclusion, which only contains the displacements on the interface between inclusion
and matrix. Compared with the existing formula, the present formula avoids the corner
point problems in the implementation of the boundary elementmethod (BEM) so that it can
conveniently deal with the complex shape inclusion problems. In numerical calculation,
3-node (8-node) quadratic boundary elements for two (three) dimensional problems are
used to discretize the interface between inclusion and matrix. Numerical results are
compared with the analytical solutions available.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Composite materials with various inclusions have become increasingly important to improve their mechanical behavior.
In this paper, the present study focuses on the effect of inclusion on the variation of matrix elastic energy.

Christensen [1] presented an integral formula for the variation ofmatrix elastic energy due to the existence of inclusion, in
which the displacements and tractions on the interface between inclusion and matrix are contained. Based on this formula,
the variation of matrix elastic energy caused by the inclusion can easily be calculated using the BEM [2], which only uses the
displacements and tractions on the inclusion–matrix interface. However, for complex shape inclusions, the discontinuous
boundary elements should be adopted near the corners since there are discontinuous tractions at the corners. Therefore, it
is not convenient to carry out the numerical implementation of the BEM, especially for 3D heterogeneous materials. Similar
case also appears in the calculation of the variation of matrix heat energy caused by the inclusion for steady state thermal
conductivities [3].

Motivated by an integral formula for steady state heterogeneous materials [3], which only contains the temperatures
on the inclusion–matrix interface, a new integral formula for calculating the variation of matrix elastic energy caused by
the inclusion, which only contains the displacements on the inclusion–matrix interface, is proposed. The present formula is
especially suitable for investigating the variation of the elastic energy for heterogeneous materials. The distinct advantage is
that it does not contain the tractions on the inclusion–matrix interface so that the corner point problems of heterogeneous
materials can be avoided.

2. Basic formula

One inclusion of another material is embedded into one homogeneous media subjected to the remote loading. The
variation of matrix elastic energy due to the existence of inclusion has the following form [1]:

∆U =
1
2

∫
Γ

(
t0i ui − tiu0

i

)
dΓ (1)
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where ui and ti (i = 1, 2, 3 for 3D problems) are, respectively, the ith displacement and ith traction components over the
interface Γ between inclusion and matrix. The repeated indices imply summation. ti = σijnj in which σij is the stress tensor,
while ni is the ith direction cosine of unit vectorn relative to the existing coordinate system. The symbolswith the superscript
0 denote the variables that are generated by the remote loading on the interface Γ between matrix and inclusion with the
same material as the matrix. t0i = σ 0

ij nj is easily obtained using the elasticity relations. The formula is considered to be of
great advantage due to its interface integral.

The formula (1) can be calculated using the BEM [2]. However, the special technique should be adopted for the inclusions
with irregular shapes, e.g. discontinuous elements are used to overcome the corner point problems. In order to avoid the use
of discontinuous elements, the formula (1) can be further improved. The detailed derivations are as follows:

The second term in the right hand side of Eq. (1) can be rewritten as∫
Γ

tiu0
i dΓ =

∫
Ω

σijε
0
ijdΩ (2)

where the strain tensor ε0
ij =

1
2

(
u0
i,j + u0

j,i

)
in which the tensor u0

i,j is called the displacement gradient tensor. In derivation
process of Eq. (2), the equilibrium equation (σij,j = 0) and Green’s theorem have been used.

The general 3D constitutive law for linear elastic materials can be expressed in standard tensor notation by the following
form [4]:

σij = Cijklεkl (3)

where Cijkl is a four order elasticity tensor, and for the isotropic materials, it can be given in the form below:

Cijkl = λδijδkl + G
(
δikδjl + δilδjk

)
(4)

where λ =
Eν

(1+ν)(1−2ν)
and is called Lame’s constant, and G =

E
2(1+ν)

is the shear modulus in which E is called the modulus

of elasticity, and ν is referred to as Poisson’s ratio.
It is assumed that the inclusion andmatrix have the same Poisson’s ratio. Bymeans of Eq. (4), we have the following form:

C I
ijkl

E I =
CM
ijkl

EM (5)

where the superscripts I and M denote the inclusion and matrix, respectively. Eq. (5) can be rewritten as

C I
ijkl =

E I

EM CM
ijkl. (6)

Substituting Eq. (6) into Eq. (3) yields

σ I
ij =

E I

EM CM
ijklεkl. (7)

Thus, the integral in the right hand side of Eq. (2) becomes∫
Ω

σijε
0
ijdΩ =

∫
Ω

E I

EM CM
ijklεklε

0
ijdΩ =

E I

EM

∫
Ω

εklσ
0
kldΩ =

E I

EM

∫
Γ

t0k ukdΩ. (8)

The final form of Eq. (8) is obtained by using the equilibrium equation (σ 0
ij,j = 0) and Green’s theorem. Substituting Eq. (8)

back into Eq. (1) produces one simplified formula of the variation of matrix elastic energy for heterogeneous material as
follows:

∆U =
1
2

(
1 −

E I

EM

)∫
Γ

t0i ui dΓ . (9)

Compared L with Eq. (1), Eq. (9) only contains the displacements over the interface between inclusion and matrix, which
can be conveniently calculated using the BEM [3]. Eq. (9) can easily be generalized to multiple inclusions, i.e.

∆U =
1
2

N∑
I=1

(
1 −

E I

EM

)∫
ΓI

t0i ui dΓ (10)

where N expresses the number of inclusions. Here, I denotes the Ith inclusion. When E I
= EM , i.e. no inclusions, ∆U is equal

to zero as expected.
In order to calculate the variation of matrix elastic energy of heterogeneous material, the displacements (no tractions)

over the interface Γ between inclusion and matrix must first be obtained. As well known, the BEMwill be a good choice for
calculating the interface displacements, i.e. the interface integral equation for heterogeneous material is as follows [5]:

cij

(
1 +

E I

EM

)
uj (p) = u0

i (p) −

∫
ΓI

(
1 −

E I

EM

)
Tij (p, q) uj (q) dΓ (11)
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