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a b s t r a c t

In this paper, we develop a class of parallel semismooth Newton algorithms for the numer-
ical solution of the American option under the Black–Scholes–Merton pricing framework.
In the approach, a nonlinear function is used to transform the complementarity problem,
which arises from the discretization of the pricing model, into a nonlinear system. Then, a
generalized Newton method with a domain decomposition type preconditioner is applied
to solve this nonlinear system. In addition, an adaptive time stepping technique, which
adjusts the time step size according to the initial residual of Newton iterations, is applied
to improve the performance of the proposed method. Numerical experiments show that
the proposed semismooth method has a good accuracy and scalability.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The model of the American option can be posed as a linear complementarity problem and various methods have been
invested to accelerate the simulation [1–4]. For all the numerical methods, the main challenge to the simulation of the
American option is how to solve the large system of equations. We briefly mention a few related publications that partially
motivated our current work. The Ref. [5] established the American put option model and then presented a simple numerical
procedure to obtain the approximate solution. The projected successive over relaxation (PSOR) method, produced by
Crywer [6], is another popular approach for the solution of the linear complementarity problem. This method for solving
the American option is described in detail in book [7], but the convergence rate of the PSOR method is not well when using
finer space mesh. In [8], Forsyth and Vetzal proposed a penalty method for the American put option model and studied
the convergence rates of this method. The penalty method is adding a small, continuous penalty term to the Black–Scholes
equation and then the solution is obtained with a generalized Newton method. The Ref. [9] used the front-fixing scheme
to solve the American option by transforming the model problem into a nonlinear parabolic differential equation. In [10],
Ikonen and Toivanen gave the operator splittingmethods for the linear complementarity problem arising from the American
option. These papers investigate many interesting aspects of the solution of the American option, but parallel computing is
not theirmain concern. In this paper, we focus on the class of semismoothNewtonmethods and some highly parallel domain
decomposition methods for the American option.

The semismooth Newton method is an efficient and popular technique for solving the semismooth nonlinear prob-
lems [11–13]. When combined with Krylov–Schwarz method, the semismooth Newton–Krylov–Schwarz framework pro-
vides a powerful technique for the solution of the resultant nonlinear system [14–16]. More precisely, in the approach, (a)
an NCP function is used to transform the linear complementarity problem into a nonlinear system; (b) a generalized Newton
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method is employed to solve the nonlinear system; (c) the linear system at each Newton process is solved by a Krylov
subspace iteration method; (d) the class of domain decomposition preconditioners is employed to accelerate the Krylov
iterations. The success of the overall approach depends heavily on the preconditioner. Thus, in the study, we choose the
overlapping additive Schwarz type domain decomposition methods [17,18] to build the preconditioner, since it is able to
substantially reduce the condition number of the linear system andmeanwhile provides the scalability formassively parallel
computing. In addition to that, for the long-term simulation of the American option, the evolution of the system usually
admits various time scales and the calculation often lasts for a long time. Therefore, it is necessary to use an adaptive time
step control for the numerical simulation. Based on this, we present an implicit method with adaptive time stepping, where
the time step size is chosen by comparing the change of the solution between two subsequent time steps. Our experiments
show that these strategies provide a good improvement of the overall method in terms of the total computing time and the
number of linear iterations.

The rest of the paper is organized as follows. In Section 2, we present an implicit finite difference scheme for the
American put option. Section 3 presents the semismooth algorithms and the constructs of the three kinds of additive Schwarz
preconditioners. Some numerical experiments are provided in Section 4 to validate the proposed algorithm and study the
parallel performance. Finally, the paper is ended with conclusions in Section 5.

2. The model and its discretization

The pricing model of the American put option can be expressed based on the Black–Scholes partial differential equa-
tion [19]
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where V is the option value, S is the asset price, τ is the time tomaturity, q is the constant continuous dividend yield, σ is the
constant volatility, and r is the constant risk free interest rate. Meanwhile, the boundary and initial conditions associated to
(1) are⎧⎨⎩

V (S, 0) = max(E − S, 0),
V (0, τ ) = E, τ ∈ [0, T ],

V (S, τ ) = 0, as S → ∞ , τ ∈ [0, T ]

(2)

where T denotes the expiration date and E is the strike price.
Because the American option embeds an early exercise right when compared with the European one, there must have a

constraint to avoid arbitrage possibilities

V (S, τ ) ≥ max(E − S, 0) := Φ(S),

where Φ is the payoff function of the option contract. Then the most important part of the pricing model is the introduction
of a free boundary. It is worth noting that the free boundary does not appear in the final expression. The free boundary is the
optimal exercise boundary and it separates the continuation region and stopping region, this is seen more clearly in Fig. 1.
As shown in the figure, S∗ is the optimal exercise price which forms the exercise boundary and it can be interpreted as the
maximum value of S for which satisfies

V (S, τ ) − max(E − S, 0) = 0. (3)

If the asset price S falls within the stopping region, it is better to exercise the option. The option value V is equal to the payoff
function and does not satisfy the Black–Scholes equation because of 0 < S ≤ S∗(τ ) < S∗(0+) = E · min(1, r/q). So we have⎧⎪⎪⎨⎪⎪⎩
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(4)

While in the continuation region, continuing hold is chosen. There is S > S∗(τ ), the option value V is greater than the payoff,
and V satisfies the Black–Scholes equation. These lead to another formulation⎧⎪⎪⎨⎪⎪⎩

V (S, τ ) > max(E − S, 0),
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