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a b s t r a c t

Misspecifications (i.e. errors on the parameters) of state space models lead to incorrect
inference of the hidden states. This paper studies weakly nonlinear state space models
with additive Gaussian noises and proposes a method for detecting and correcting mis-
specifications. The latter induce a biased estimator of the hidden state but also happen to
induce correlation on innovations and other residues. This property is used to find a well-
defined objective function for which an optimization routine is applied to recover the true
parameters of themodel. It is argued that thismethod can consistently estimate the bias on
the parameter.We demonstrate the algorithm on variousmodels of increasing complexity.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

This paper is concerned with the following family of discrete time state space models with additive Gaussian noises:{
xt = b(θ0, xt−1) + βθ0ηt ,

yt = h(θ0, xt ) + σθ0εt .
(1)

The variables ηt ∼ N (0, In×1), εt ∼ N (0, Im×1) are assumed to be independent standard normal variables, t ∈ N∗, βθ0
(resp.σθ0 ) are n×n (resp.m×m, withσ0σ

∗

0 positive definite)matrices, and θ0 stands for the vector of parameters of themodel.
The functions b, h, β, α are assumed to be differentiable. The hidden states (or unobserved signal process) {xt , t ∈ N} take
value in X := Rn and the observations {yt , t ∈ N∗} in Y := Rm. We also denote the noise covariance matrices Rθ0 := σθ0σ

∗

θ0
,

Qθ0 := βθ0β
∗

θ0
where ∗ stands for the transpose.

The aim of filtering is to make inference about the hidden state xt conditionally to the observations y1, . . . , yt denoted
y1:t thereafter. In order to do so, there are various ways to estimate the parameters θ0 that, in most situations of interest
are unknown and have to be approximated. They may for example be estimated using standard techniques (MLEs...), or be
incorporated to the set of random quantities to be estimated. To quote only one example in the recent literature, Particle
Gibbs samplers have proven to be a good way to simulate the joint distribution of hidden processes and model parameters
in hidden Markov chain models, see e.g. [1–3].

Here, we face a different problem: we consider the situation where θ0 has been incorrectly estimated, for example
using a given biased estimator θ̂ such that E[θ̂ ] = θ = θ0 + ϵ (the way the estimator has been devised is of no matter
for our purposes). Our interest for these questions originated in the study of random volatility models such as Heston’s,
where some parameters are difficult to estimate. We wanted to understand how errors on the model parameters could
impact the volatility estimates. The detection of errors method that is the purpose of the present article first arose from
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statistical phenomena detected in numerical simulations. We realized soon that the phenomena were universal, and related
to theoretical properties of misspecified models. Application domains include for example engineering and control where
the parameters θ may be known at inception but may change to a new value θ0, for example due to a mechanical problem,
so that θ becomes a wrong value for the true model parameters. Detecting the change from θ to θ0 may then be useful not
only to improve the inference process, but also to detect the underlying problem.

It is well-known that using such incorrect filter models deteriorates the filter performance and may even cause the filter
to diverge. Various results have been obtained in the literature on the impact of ϵ on the estimator of the hidden state; error
covariance matrices have been studied and compared with the covariance matrices of the conditional distribution of xt and
xt+1 knowing y1:t . These results are described in [4], where the reader can also find a survey of the classical literature on the
subject.

The aim of the present article is different: we want to take advantage of the theoretical properties of misspecified state
space models, not only to understand the impact of ϵ on the estimation of the hidden states but also, ultimately, to use its
statistical properties in order to get a correct set of parameters for the state space model.

The key result underlying our analysis is that misspecifications do certainly induce a biased estimator of the hidden state
but also, and most importantly for our purposes, they happen to induce correlation on the innovations and other residues
associated to observations. This property is used to find a well-defined objective function for which an optimization routine
is applied to recover the true parameters of themodel. It is argued that this method can consistently estimate the bias on the
parameter. The method is easy to implement and runs fast. We demonstrate the algorithm on various models of increasing
complexity.

Discrete time state space models are notoriously ubiquitous; their use is discussed in most textbooks on filtering from
the early [5,4,6,7] to the recent literature we refer e.g. to [8] for a survey. Application domains of our results include, besides
finance, control and engineering: ecology, economy, epidemiology, meteorology and neuroscience.

For example, our approach can be applied for neuronal dynamics where linear state space models are widely used due to
their numerical efficiency. Parameter estimation in biophysicalmodeling of neurons and detection of changes in the behavior
of the neuron cell membrane voltage constitute a problem of central importance (see [9,10] and [11]). For these models, we
observe the time evolution of the neuron cell membrane voltage and can model the hidden variable, the variation of ion
concentration, using a noisy discrete dynamical system. This variation of ion depends on various parameters θ0 that control
the voltage dependence of the steady states and relaxation times of activation and inactivation. For this model our method
can be potentially useful to detect different patterns of electrical activity.

Another example of application where the approach can be useful is for multisensor-multitarget tracking. Typical
applications of multisensor-multitarget tracking are in air traffic control [12], space surveillance and radar or visual tracking
(see [13] and [14]). Most practical systems consist of a number of different sensors and the goal is to estimate the targets of
interest from these different sensors. Many of these systems are modeled as discrete time linear or weakly nonlinear state
spacemodels as for example the target vehiclemotion state radar estimation. The hidden variables, the position, the velocity
and the acceleration of the target vehicle, can be estimated by the Kalman filter from the radar measurements (see [15]). For
this kind of applications our approach leads to detect sudden vehicle movements, as for example an increasing velocity, or
an abnormal deviation of the trajectory of the target due to a mechanical problem.

The paper is organized as follows. Section 2 presents the model assumptions and introduces various estimators and
processes, including the ‘‘interpolation process’’ (3) that plays a central role in the article. Section 3 states the theoretical
results. In Section 4, we describe the method and in the following one demonstrates the algorithms on three examples: the
first application is largely pedagogical and studies an elementary autoregressive linear model for which our approach can be
easily understood. Wemove then to a nonlinear (square root) model, and, to conclude, apply our approach to a complex and
nonlinear model, that is the Heston model, widely used in finance for option pricing and portfolios hedging. The behavior
of this last model when it comes to parameter estimation is notoriously difficult; our method behaves nevertheless quite
satisfactorily. We compare finally our method and estimator (based on the interpolation process) with the estimator using
the same strategy but based instead on innovations. Some concluding remarks are provided in Section 7. The technical proofs
are gathered in Appendices A and B.

Notation: for any continuously differentiable function g , [∂g/∂θ ] denotes the vector of the partial derivatives of g w.r.t θ .

2. The misspecified (extended) Kalman filter

In the linear case, the model (1) reads (t ∈ N∗):{
xt = ut (θ0) + Aθ0xt−1 + βθ0ηt
yt = dt (θ0) + Cθ0xt + σθ0εt .

(2)

If the vector of parameters θ0 is perfectly known, the optimal filtering pθ0 (xt |y1:t ) is Gaussian and the Kalman filter gives
exactly the two first conditional moments: x̂t = E[xt |y1:t ] and Pt = E[(xt − x̂t )(xt − x̂t )∗|y1:t ]. In particular, the Kalman filter
estimator is the BLUE (Best Linear and Unbiased Estimator) among linear estimators.

In most real applications, the linearity assumption of the functions h and b is not satisfied. A linearization by a first order
Taylor series expansion can be performed and the Extended Kalman filter (EKF) consists in applying the Kalman filter on this
linearizedmodel. Concretely, for the EKF, thematrix Cθ0 is the derivative of the function hwith respect to (w.r.t.) x computed
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