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a b s t r a c t

We modify the generalized Newton method, proposed by Mangasarian (2007), for solving
NP-complete absolute value equation, so that it is numerically stable and has convergence
order two. Moreover, the convergence conditions are weaker than already iterative meth-
ods, hence this method can be applied to a broad range of problems. Applicability of the
proposed method is tested for various examples.

1. Introduction

We consider the following absolute value equation (AVE)

G(x) = Ax − |x| − b = 0, (1)

where A ∈ Rn×n, b ∈ Rn, and |.| denotes absolute value. Mangasarian has proved that the general linear complementarity
problem (LCP) is equivalent to an absolute value equation such as (1) (see Proposition in 1 [1]). To solve (1), Mangasarian
applies the generalized Newton method for solving the AVE (1) provided that the singular values of A are not less than one
(see Lemma 6 in [2]). Although, the generalized Newton method is a linear convergent method, a quadratically convergent
method under the same condition has been developed [3]. When the singular values of A exceed 1, the AVE (1) has a unique
solution [4,5]. It isworth pointing out that this condition has some equivalences [6]. Hence it seems that under this limitation,
such iterative methods converge globally [7]. On the other hand, Prokopyev proves that checking whether the AVE (1) has a
unique or multiple solutions is an NP-complete problem [8]. Therefore, it is not generally possible to construct a polynomial
algorithm for solvability of AVE. It is worth noting that to avoid the assumption of having singular values greater than one,
some other iterative methods have been developed in which all of them converge linearly [9–12].

Wedevelop an iterativemethod to overcome the two limitations suggested byMangasarian [1] of the generalizedNewton
method for solving the NP-complete AVE (1). First, since we are dealing with an NP-complete problem, we cannot generally
assume that the singular values of A exceed one. As a vivid example in R, the generalized Newton–Mangasarian method fails
to solve theAVE x−|x| = 1, because it has no solution. Consequently, as a limitation, this assumption can undoubtedly reduce
the number of the real problems and applications that occur in LCP. Second,we focus onmodifying the generalizedmethod in
such away that has convergence order two, and it is a numerically stablemethod. Here ourmethod converges locally because
of the nonlinear and NP-complete nature of the problem. If we want to obtain a global quadratically convergent method, we
need to make extra assumptions, or, we should consider very special cases. So, we wish to put it aside as an independent
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research problem. This paper is organized as follows: Section 2 deals with construction of the proposed method. Then the
convergence analysis and numerical stability are presented. Section 3 is devoted to numerical test problems. The last section
concludes the paper.

2. Main results

In this section, reconsidering the generalized Newton method [1], we modify it in such a way that it has convergence
order two with some more general conditions compared with the given conditions by Managasarian in [1]. To this end, let
the generalized Jacobian of (1) be given by [1]:

JG(x) = A − Tz(x), (2)

where Tz(x) =diag(sign(x)). Let x0 be a suitable starting vector to the exact solution, say x∗, of (1). Then, we propose the
following modified Newton–Mangasarian method

(A − Tz(xk))∆xk = −Axk + |xk| + b, (3)

xk+1
= xk + ∆xk, k = 0, 1, 2, . . . . (4)

It should be noted that we first solve the linear system (3), and then, we update the value xk+1 from (4). Therefore, we reduce
the numerical solution of solving a nonlinear system of equations to the numerical solution of a linear systems of equations.
For more details, one can consult [13–15]. We will prove, under weaker conditions than given already, that this method is
numerically stable and of convergence order two.

To prove the quadratic convergence order of the method (3)–(4), we need the following lemma:

Lemma 2.1. Let D be an open convex set in Rn, and let JG be Lipschitz continuous at x in the neighborhood D. Then, for any
t ∈ [0, 1] and x + t∆x ∈ D,

∥G(x + ∆x) − G(x) − JG(x)∆x∥ ≤
LJG
2

∥∆x∥2, (5)

where LJG is the Lipschitz constant for JG at x, in other words,

∥JG(x + t∆x) − JG(x)∥ ≤ LJG∥t∆x∥.

Proof. By the use of integral mean value theorem, we have

G(x + t∆x) − G(x) − JG(x)∆x =

∫ 1

0
JG(x + t ∆x)∆x dt − JG(x)∆x

=

∫ 1

0
(JG(x + t ∆x) − JG(x)) ∆x dt.

Taking norm and considering the Lipschitz condition on JG, we have

∥G(x + t∆x) − G(x) − JG(x)∆x∥ = ∥

∫ 1

0

(
JG(x + t ∆x) − JG(x)

)
∆x dt∥

≤

∫ 1

0
∥JG(x + t ∆x) − JG(x)∥ ∥∆x∥ dt

≤

∫ 1

0
∥LJG t ∆x∥ ∥∆x∥ dt =

LJG
2

∥∆x∥2.

Now, we can prove the quadratic convergence of the proposed method (3)–(4). Let Nr (x∗) = {x ∈ Rn
: ∥x− x∗

∥ < r}, and
rk = ∥xk − x∗

∥.

Theorem 2.2. Suppose that x∗ is a solution of the AVE (1), i.e., G(x∗) = 0. In addition, suppose that the assumptions of the
Lemma 2.1 hold, G is a continuously differentiable for all xk ∈ Nr (x∗) ⊂ D, and ∥JG(x)−1

∥ < 1. Then, the sequence {xk}, k > 0,
generated by (3)–(4) satisfies

∥xk+1
− x∗

∥ ≤
LJG
2

∥xk − x∗
∥
2. (6)
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