## Discrete Mathematics

# On the diameter of Kronecker graphs 

Justyna Banaszak, Tomasz Łuczak*

Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Poznań, Poland

## ARTICLE INFO

## Article history:

Received 4 May 2017
Received in revised form 5 June 2018
Accepted 26 July 2018

## Keywords:

Random graphs
Kronecker graph
Diameter
Connectivity


#### Abstract

We prove that a.a.s. as soon as a Kronecker graph becomes connected it has a finite diameter.


© 2018 Elsevier B.V. All rights reserved.

## 1. Introduction

A Kronecker graph is a random graph with vertex set $V=\{0,1\}^{n}$, where the probability that two vertices $u, v \in V$ are adjacent strongly depends on the structure of the vectors $u=\left(u_{1}, \ldots, u_{n}\right)$, and $v=\left(v_{1}, \ldots, v_{n}\right)$. More specifically, let $\mathbf{P}$ be a symmetric matrix

$$
\mathbf{P}=\begin{gathered}
\\
1 \\
0
\end{gathered}\left(\begin{array}{cc}
1 & 0 \\
\alpha & \beta \\
\beta & \gamma
\end{array}\right),
$$

where zeros and ones are labels of rows and columns of $\mathbf{P}, \alpha, \beta, \gamma \in[0,1]$, and $\alpha \geq \gamma$. In the Kronecker graph $\mathcal{K}(n, \mathbf{P})$ two vertices $u=\left(u_{1}, \ldots, u_{n}\right), v=\left(v_{1}, \ldots, v_{n}\right) \in V=\{0,1\}^{n}$ are adjacent with probability

$$
p_{u, v}=\prod_{i=1}^{n} \mathbf{P}\left[u_{i}, v_{i}\right]
$$

independently for each such pair.
Kronecker graphs were introduced by Leskovec, Chakrabarti, Kleinberg and Faloutsos in [2] to model some real world networks (see also [1,3,7]). Since then they have been studied by several authors but their properties are still far from being well understood (see [4] and references therein). In particular, Radcliffe and Young [9] determined the exact threshold for the property that $\mathcal{K}(n, \mathbf{P})$ is connected, supplementing a slightly weaker result of Mahdian and Xu [8].

[^0]
## Theorem 1.

$$
\lim _{n \rightarrow \infty} \mathbb{P}(\mathcal{K}(n, \mathbf{P}) \text { is connected })= \begin{cases}0 & \text { if } \beta+\gamma=1, \beta \neq 1 \\ 0 & \text { if } \beta=1, \alpha=\gamma=0 \\ 1 & \text { if } \beta=1, \alpha>0 \text { and } \gamma=0 \\ 1 & \text { if } \beta+\gamma>1\end{cases}
$$

The main result of this work states that as soon as $\mathcal{K}(n, \mathbf{P})$ becomes connected its diameter is bounded by a constant.
Theorem 2. If either $\beta+\gamma>1$, or $\beta=1, \alpha>0$ and $\gamma=0$, then there exists a constant $a=a(\alpha, \beta, \gamma)$ such that a.a.s. $\operatorname{diam}(\mathcal{K}(n, \mathbf{P})) \leq a$.

## 2. The idea of the proof

In order to sketch our argument let us recall how one shows that the diameter is bounded from above for the binomial random graph model $G(N, p)$, and for many other random graph models. Typically, since random graphs are good expanders, it is proven first that for some small $k$ the $k$-neighbourhood of each vertex is much larger than $\sqrt{N}$. Then, in the second part of the proof, one argues that since two random subsets of vertices of size larger than $\sqrt{N}$ intersect with large probability, each pair of vertices is a.a.s. connected by a path of length at most $2 k$. However, in our case this procedure fails completely. The main reason is that most neighbours of a given vertex $v$ have a similar structure, and so the events ' $x \sim v$ ' and ' $y \sim v$ ' are strongly correlated. Thus, the $k$-neighbourhood of a given vertex is very far from being a random subset, which is crucial for the second step of the procedure. Even more importantly, we do not understand expanding properties of $\mathcal{K}(n, \mathbf{P})$ and it is hard to control how fast the $k$-neighbourhoods of a vertex $\mathcal{K}(n, \mathbf{P})$ grow, which in most of the other random graph models is quite easy to investigate.

In [8], the diameter of $\mathcal{K}(n, \mathbf{P})$ is studied for $\gamma \leq \beta \leq \alpha$. For this specific range of parameters the probability of appearance of an edge of $\mathcal{K}(n, \mathbf{P})$ grows with the weights of its ends, i.e. for every two vertices $u, v$ the probability that there exists an edge $u v$ is always greater than the probability of an edge $u v^{\prime}$, whenever $v$ has greater weight than $v^{\prime}$. Using this fact the authors of [8] bounded from above the diameter of $\mathcal{K}(n, \mathbf{P})$ using well known bounds for the diameter of binomial random graphs.

To handle the difficulties related to the dependence of edges in $\mathcal{K}(n, \mathbf{P})$ in the general case we use the following approach. We consider two vertices, $v$ and $u$ which are 'similar' to each other (more specifically, we choose both of them from the middle layer of the $n$-cube and assume that they have small Hamming distance from each other). Then we generate their neighbourhoods at the same time until, for some $k$, we observe that the $k$-neighbourhood of $v$ does not expand according to its expected rate. This is because many, in fact most, candidates for $(k+1)$-neighbours of $v$ have already been placed in the $i$-neighbourhood of $v$ for some $i \leq k$. However, the chance that a vertex $x$ is in the $i$-neighbourhood of $v$ is roughly the same as the probability that $x$ is in the $i$-neighbourhood of $u$ so, if most potential $(k+1)$-neighbours of $v$ are already in its $k$ th neighbourhood, many of them are also in the $k$ th neighbourhood of $u$. Consequently, there is a path of length at most $2 k$ joining $v$ and $u$.

The structure of the paper is the following. First we treat a special 'pathological' case $\beta=1$. Then we present the crucial part of our argument showing that the subgraph induced in $\mathcal{K}(n, \mathbf{P})$ by its middle layer has a.a.s. a small diameter. Finally, we complete the proof showing that a.a.s. each vertex of $\mathcal{K}(n, \mathbf{P})$ is connected to the middle layer by a short path.

## 3. Case $\beta=1$

In this section we show that if $\beta=1, \alpha>0$, and $\gamma=0$, then the diameter of $\mathcal{K}(n, \mathbf{P})$ is a.a.s. bounded by a constant. This set of parameters $\alpha, \beta, \gamma$ is somewhat special as it is the only case, when $\beta+\gamma=1$ and $\operatorname{still} \mathcal{K}(n, \mathbf{P})$ is a.a.s. connected.

We introduce some notation, which we shall use throughout the paper. By $d(v, u)$ we denote the Hamming distance between two vertices $v$ and $u$ and $w(v)$ stands for the weight of a vertex $v=\left(v_{1}, \ldots, v_{n}\right)$, i.e. the number of ones in its label that is

$$
w(v)=\sum_{i=1}^{n} v_{i}
$$

For a vertex $v=\left(v_{1}, \ldots, v_{n}\right)$, we set $\bar{v}=\left(1-v_{1}, \ldots, 1-v_{n}\right)$.
Now let us go back to the case $\beta=1$. Note that

$$
\mathbb{P}(v \sim \bar{v})=\beta^{n}=1
$$

and observe that either $v$ or $\bar{v}$ has weight at least $n / 2$. Thus, to show the assertion it is enough to verify that a.a.s. there exists a path of bounded length between every pair of vertices in $R$ defined as

$$
R=\{v \in V: w(v) \geq n / 2\}
$$

# https://daneshyari.com/en/article/8902839 

Download Persian Version:

## https://daneshyari.com/article/8902839

## Daneshyari.com


[^0]:    * Corresponding author.

    E-mail addresses: tabor@amu.edu.pl (J. Banaszak), tomasz@amu.edu.pl (T. Łuczak).

