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a b s t r a c t

We prove that a.a.s. as soon as a Kronecker graph becomes connected it has a finite
diameter.
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1. Introduction

A Kronecker graph is a random graph with vertex set V = {0, 1}n, where the probability that two vertices u, v ∈ V are
adjacent strongly depends on the structure of the vectors u = (u1, . . . , un), and v = (v1, . . . , vn). More specifically, let P be
a symmetric matrix

P =

( 1 0
1 α β

0 β γ

)
,

where zeros and ones are labels of rows and columns of P, α, β, γ ∈ [0, 1], and α ≥ γ . In the Kronecker graph K(n, P) two
vertices u = (u1, . . . , un), v = (v1, . . . , vn) ∈ V = {0, 1}n are adjacent with probability

pu,v =

n∏
i=1

P[ui, vi],

independently for each such pair.
Kronecker graphs were introduced by Leskovec, Chakrabarti, Kleinberg and Faloutsos in [2] to model some real world

networks (see also [1,3,7]). Since then they have been studied by several authors but their properties are still far from being
well understood (see [4] and references therein). In particular, Radcliffe and Young [9] determined the exact threshold for
the property that K(n, P) is connected, supplementing a slightly weaker result of Mahdian and Xu [8].
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Theorem 1.

lim
n→∞

P(K(n, P) is connected) =

⎧⎪⎨⎪⎩
0 if β + γ = 1, β ̸= 1
0 if β = 1, α = γ = 0
1 if β = 1, α > 0 and γ = 0
1 if β + γ > 1.

The main result of this work states that as soon as K(n, P) becomes connected its diameter is bounded by a constant.

Theorem 2. If either β + γ > 1, or β = 1, α > 0 and γ = 0, then there exists a constant a = a(α, β, γ ) such that a.a.s.
diam(K(n, P)) ≤ a.

2. The idea of the proof

In order to sketch our argument let us recall how one shows that the diameter is bounded from above for the binomial
random graphmodel G(N, p), and formany other random graphmodels. Typically, since random graphs are good expanders,
it is proven first that for some small k the k-neighbourhood of each vertex is much larger than

√
N . Then, in the second part

of the proof, one argues that since two random subsets of vertices of size larger than
√
N intersect with large probability,

each pair of vertices is a.a.s. connected by a path of length at most 2k. However, in our case this procedure fails completely.
The main reason is that most neighbours of a given vertex v have a similar structure, and so the events ‘x ∼ v’ and ‘y ∼ v’
are strongly correlated. Thus, the k-neighbourhood of a given vertex is very far from being a random subset, which is crucial
for the second step of the procedure. Even more importantly, we do not understand expanding properties of K(n, P) and it
is hard to control how fast the k-neighbourhoods of a vertexK(n, P) grow, which in most of the other random graph models
is quite easy to investigate.

In [8], the diameter ofK(n, P) is studied for γ ≤ β ≤ α. For this specific range of parameters the probability of appearance
of an edge of K(n, P) grows with the weights of its ends, i.e. for every two vertices u, v the probability that there exists an
edge uv is always greater than the probability of an edge uv′, whenever v has greater weight than v′. Using this fact the
authors of [8] bounded from above the diameter of K(n, P) using well known bounds for the diameter of binomial random
graphs.

To handle the difficulties related to the dependence of edges inK(n, P) in the general case we use the following approach.
We consider two vertices, v and u which are ‘similar’ to each other (more specifically, we choose both of them from the
middle layer of the n-cube and assume that they have small Hamming distance from each other). Then we generate their
neighbourhoods at the same time until, for some k, we observe that the k-neighbourhood of v does not expand according
to its expected rate. This is because many, in fact most, candidates for (k + 1)-neighbours of v have already been placed in
the i-neighbourhood of v for some i ≤ k. However, the chance that a vertex x is in the i-neighbourhood of v is roughly the
same as the probability that x is in the i-neighbourhood of u so, if most potential (k + 1)-neighbours of v are already in its
kth neighbourhood, many of them are also in the kth neighbourhood of u. Consequently, there is a path of length at most 2k
joining v and u.

The structure of the paper is the following. First we treat a special ‘pathological’ case β = 1. Then we present the crucial
part of our argument showing that the subgraph induced in K(n, P) by its middle layer has a.a.s. a small diameter. Finally,
we complete the proof showing that a.a.s. each vertex of K(n, P) is connected to the middle layer by a short path.

3. Case β = 1

In this section we show that if β = 1, α > 0, and γ = 0, then the diameter ofK(n, P) is a.a.s. bounded by a constant. This
set of parameters α, β, γ is somewhat special as it is the only case, when β + γ = 1 and still K(n, P) is a.a.s. connected.

We introduce some notation, which we shall use throughout the paper. By d(v, u) we denote the Hamming distance
between two vertices v and u and w(v) stands for the weight of a vertex v = (v1, . . . , vn), i.e. the number of ones in its label
that is

w(v) =

n∑
i=1

vi.

For a vertex v = (v1, . . . , vn), we set v̄ = (1 − v1, . . . , 1 − vn).
Now let us go back to the case β = 1. Note that

P(v ∼ v̄) = βn
= 1,

and observe that either v or v̄ has weight at least n/2. Thus, to show the assertion it is enough to verify that a.a.s. there exists
a path of bounded length between every pair of vertices in R defined as

R = {v ∈ V : w(v) ≥ n/2}.
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