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a b s t r a c t

A BH(q, n) Butson-type HadamardmatrixH is an n×nmatrix over the complex qth roots of
unity that fulfilsHH∗ = nIn. It is well known that a BH(4, n) matrix can be used to construct
a BH(2, 2n) matrix, that is, a real Hadamard matrix. This method is here generalised to
construct a BH(q, pn) matrix from a BH(pq, n) matrix, where q has at most two distinct
prime divisors, one of them being p. Moreover, an algorithm for finding the domain of the
mapping from its codomain in the case p = q = 2 is developed and used to classify the
BH(4, 16) matrices from a classification of the BH(2, 32) matrices.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

A BH(q, n) Butson-type Hadamard matrix H is an n× n matrix with entries that are complex qth roots of unity, such that
HH∗ = nIn where H∗ denotes the conjugate transpose of H and In is the n × n identity matrix [1]. Butson-type Hadamard
matrices generalise (real) Hadamardmatrices, which are BH(2, n) matrices. For more information about Hadamardmatrices
in general and Butson-type Hadamard matrices in particular, see, for example, [5,14,17].

An interesting open problem in this area is theHadamard Conjecture, which asserts that BH(2, n) matrices exist whenever
n is divisible by 4. With respect to this conjecture, the BH(4, n) matrices have also received attention. The following theorem
is [2, Theorem 1]; Turyn [18] gives credit to Williamson [19] for some of the underlying theory.

Theorem 1. If there is a BH(4, n) matrix, then there is a BH(2, 2n) matrix.

If the Complex Hadamard Conjecture – saying that BH(4, n) matrices exist whenever n is divisible by 2 – is true, then
Theorem 1 implies that the Hadamard Conjecture is also true. (The name of this conjecture comes from the fact that BH(4, n)
matrices have been called complex Hadamard matrices and quaternary complex Hadamard matrices in the literature.)

An increasing interest in BH(q, n) matrices with q ̸∈ {2, 4} has raised the question whether there are results similar to
that in Theorem 1 for other values of q. One such result was obtained by Compton, Craigen, and de Launey [3].

Theorem 2. If there is a BH(6, n) matrix with no entries in {−1, 1}, then there is a BH(2, 4n)matrix.

Theorem 2 can further be seen as a corollary of Theorem 1 and the following result from [12].

Theorem 3. If there is a BH(6, n) matrix with no entries in {−1, 1}, then there is a BH(4, 2n) matrix.
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Further work on generalising these theorems has been carried out by Egan and Ó Catháin [4].
In this paper, we generalise Theorem 1 and show that a BH(q, pn) matrix can be constructed from a BH(pq, n) matrix,

where q is divisible by at most two distinct prime numbers, and p is one of them. This is the topic of Section 2. In Section 3,
we discuss equivalence of Butson-type Hadamard matrices, especially in the context of the results of Section 2. In Section 4,
we consider the computational problem of finding the domain of the mapping considered in Section 2 when p = q = 2.
Specifically, we develop an algorithm for classifying the BH(4, n) matrices from a classification of the BH(2, 2n) matrices,
and apply this to the classification of the BH(2, 32)matrices carried out by Kharaghani and Tayfeh-Rezaie [8,9]. These results
corroborate the computational classification of BH(4, 16), obtained recently in [12] using different techniques.

2. Mappings of matrices

We denote the (i, j)th entry of a matrixM byMij and the set of qth roots of unity by

Ωq :=
{
ω ∈ C : ωq

= 1
}
.

Some types of mappings for Butson-type Hadamardmatrices are well known and have been thoroughly studied; perhaps
the most basic and natural one is the Kronecker product.

Definition 1. Let A be a n× nmatrix and B a square matrix. The Kronecker product of A and B is defined as

A⊗ B =

⎡⎢⎣A11B . . . A1nB
...

...

An1B . . . AnnB

⎤⎥⎦ .

Lemma 1. (A⊗ B)(C ⊗ D) = AC ⊗ BD whenever AC and BD are defined.

It is easy to show that the Kronecker product of a BH(q, n) matrix and a BH(q, n′) matrix is a BH(q, nn′) matrix. In this
straightforward mapping only the matrix dimensions change. We shall now consider mappings from BH(q, n) matrices to
BH(q′, n′) matrices, where q′ < q. For this we need some definitions.

Definition 2. The filtering function fq : C→ Ωq ∪ {0} is

fq(x) :=
{
x if x ∈ Ωq,

0 otherwise.

When applied to a matrix H , fq(H) acts elementwise. For a given root of unity ζ , we further define Fk,q,ζ (H) := fq(ζ kH).

Lemma 2. Let q = parb, a ≥ 1, b ≥ 0, where p and r are primes. If H is a BH(pq, n) matrix and ζ ∈ Ωpq \ Ωq, then
H =

∑p−1
k=0ζ

−kFk,q,ζ (H).

Proof. The (multiplicative) cyclic group G over Ωq is a subgroup of the (multiplicative) cyclic group G′ over Ωpq. The result
follows if we can show that for an arbitrary element a ∈ Ωpq, the elements aζ 0, aζ 1, . . . , aζ p−1 form a transversal of the
cosets of G in G′, whereby exactly one of the elements is in Ωq. Indeed, if aζ i and aζ j with 0 ≤ i < j ≤ p − 1 would belong
to the same coset, then we would have ζ j−i

∈ Ωq, and then ζ ∈ Ωq(j−i). However, since (j− i) and p share no prime divisors,
we have Ωpq ∩Ωq(j−i) = Ωq, so this would further imply that ζ ∈ (Ωpq \Ωq) ∩Ωq(j−i) = ∅, a contradiction. □

Definition 3. Let Rm,p,ζ := Rp,ζ ⊗ Im/p, where m is divisible by p and Rp,ζ is the p× p monomial matrix⎡⎢⎢⎢⎢⎣
0 0 · · · 0 ζ−p

1 0 · · · 0 0
0 1 · · · 0 0

. . .

0 0 · · · 1 0

⎤⎥⎥⎥⎥⎦ .

Proving the following properties of the m × m matrix Rm,p,ζ is a matter of direct calculation. Similar properties hold for
Rp,ζ .

Lemma 3. Rm,p,ζR∗m,p,ζ = Im and Rp
m,p,ζ = ζ−pIm.

Definition 4. For a BH(pq, n) matrix H , a BH(q,m) matrix C , and ζ ∈ Ωpq \Ωq, let

L(H, C, ζ ) :=
p−1∑
k=0

Rk
m,p,ζC ⊗ Fk,q,ζ (H).



Download English Version:

https://daneshyari.com/en/article/8902859

Download Persian Version:

https://daneshyari.com/article/8902859

Daneshyari.com

https://daneshyari.com/en/article/8902859
https://daneshyari.com/article/8902859
https://daneshyari.com

