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a b s t r a c t

The Wiener polynomial of a connected graph G is defined as W (G; x) =
∑

xd(u,v), where
d(u, v) denotes the distance between u and v, and the sum is taken over all unordered
pairs of distinct vertices of G. We examine the nature and location of the roots of Wiener
polynomials of graphs, and in particular trees. We show that while the maximummodulus
among all roots ofWiener polynomials of graphs of ordern is

(n
2

)
−1, themaximummodulus

among all roots ofWiener polynomials of trees of order n grows linearly in n. We prove that
the closure of the collection of real roots of Wiener polynomials of all graphs is precisely
(−∞, 0], while in the case of trees, it contains (−∞, −1]. Finally, we demonstrate that the
imaginary parts and (positive) real parts of roots of Wiener polynomials can be arbitrarily
large.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Let G be a connected graph of order at least 2 and diameter D(G). TheWiener polynomial of G is defined as

W (G; x) =

∑
xd(u,v),

where d(u, v) = dG(u, v) is the distance between u and v, and the sum is taken over all distinct unordered pairs of vertices u
and v of G. Thus if di(G) denotes the number of pairs of vertices distance i apart in G, for i = 1, 2, . . . ,D(G), then

W (G; x) =

D(G)∑
i=1

di(G)xi.

If G is clear from context, then wewrite di and D instead of di(G) and D(G), respectively. Note that we restrict our discussions
to connected graphs of order at least 2 throughout, so that theWiener polynomial is well-defined and nonzero. Adding loops
or multiple edges to a connected graph has no effect on theWiener polynomial, so we lose no generality by considering only
simple graphs.

The successful study of the chromatic [13], characteristic [22], independence [20] and reliability [4] polynomials of
graphs has motivated the study of various other graph polynomials. The Wiener polynomial was introduced in [17] and
independently in [24], and has since been studied several times (see [12,14,29,31], for example). Unlike many other graph
polynomials (such as the chromatic, reliability and independence polynomials), the Wiener polynomial can be calculated in
polynomial time.
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Fig. 1. The Wiener roots of all connected graphs of order 8.

Interest in theWiener polynomial first arose out of work on theWiener index of a connected graph, introduced in [30] and
defined as the sum of the distances between all pairs of vertices of the graph. It can readily be seen that the Wiener index of
G is obtained by evaluating the derivative of the Wiener polynomial of G at x = 1. The Wiener index of a molecular graph is
closely correlated with certain physical properties of the substance, such as its melting and boiling point; see [15,23,27,30].
Applications of the Wiener index have also been found outside chemistry, for example in the design of architectural floor
plans [21].

Wiener polynomials of trees will be of particular interest to us, so we mention that the Wiener polynomial of a tree also
arises in the context of network reliability. Given a graphG in which each edge is operational with probability p, the resilience
or pair-connected reliability of G is the expected number of pairs of vertices of G that can communicate [1,11]. In particular,
in a tree T , the probability that any pair of vertices u and v can communicate is simply pd(u,v). Therefore, the resilience of T
is exactlyW (T ; p).

In this article, we focus on the study of the roots of theWiener polynomial of a graph G, which we call theWiener roots of
G. TheWiener roots of all connected graphs of order 8 are shown in Fig. 1. Though theWiener roots of some narrow families
of graphs were studied in [12], little is known about the nature and location of the Wiener roots of graphs in general. Given
that properties of the roots of other graph polynomials have been well-studied, it is natural to study the roots of theWiener
polynomial in greater depth.

SinceW (G; x) = x(d1 + d2x+ · · · + dDxD−1), we see that x = 0 is a root of everyWiener polynomial. The remaining roots
are those of the polynomial Ŵ (G; x) = d1 + d2x + · · · + dDxD−1, which we will refer to as the reduced Wiener polynomial of
G. Note that the value of d1 is the number of edges, so that if the order of G is at least 2, then 0 is not a root of Ŵ (G; x) (and
hence is a simple root of the original Wiener polynomialW (G; x)).

The layout of the article is as follows. In Section 2, we determine that
(n
2

)
− 1 is the maximummodulus among all Wiener

roots of connected graphs of order n, and we describe the extremal graphs which have a root of this maximum modulus. In
contrast, we then show that for trees, the rate of growth of the maximum modulus is Θ(n). Finally, we determine that 2

n−2
is the minimummodulus among all nonzero Wiener roots of connected graphs of order n, and again we are able to describe
the extremal graphs (which are trees). In Section 3, we prove that the closure of the collection of all real Wiener roots of
connected graphs is (−∞, 0], and that for trees, the closure of all real Wiener roots still contains (−∞, −1]. In Section 4,
we study the real and imaginary parts of Wiener roots. We show that there are Wiener roots of trees with arbitrarily large
imaginary part, and that there are Wiener roots of trees with arbitrarily large positive real part. This work culminates in a
proof of the fact that the collection of complex Wiener roots of all graphs is not contained in any half-plane (a region in the
complex plane consisting of all points on one side of a line and no points on the other side). Finally, we prove that almost
all graphs have all real Wiener roots, and we find purely imaginaryWiener roots. Throughout, we compare and contrast our
results with what is known about the roots of other graph polynomials.

2. Bounding the modulus of Wiener roots

Bounding the modulus of roots of various graph polynomials has been a central point of interest in the literature. For
example, Sokal [25] settled an outstanding problem in proving that the modulus of a chromatic root (a root of the chromatic
polynomial) of a graph of maximum degree ∆ is at most a constant times ∆. This implies that the modulus of any chromatic
root of a graph of order n is at most Cn for some positive constant C; the precise value of the smallest such constant is still
unknown. The independence polynomial of a graph G is the generating function for the number of independent sets of each
cardinality in G. Among all graphs of order n and fixed independence number β , the maximummodulus of an independence
root is (n/β)β−1

+ O
(
nβ−2

)
[7]. For the all-terminal reliability polynomial, it is suspected that the collection of all roots is

bounded in modulus (as no roots have been found outside of the disk |z − 1| ≤ 1.2). Currently the best known upper
bound on the modulus of the roots for all graphs of order n is linear in n, as shown in [6]. For the independence polynomial,
the all-terminal-reliability polynomial, and the chromatic polynomial, the extremal graphs that have a root of maximum
modulus (among all graphs of order n) are not known. In contrast, we completely determine the extremal graphs whose
Wiener polynomials have a root of maximum modulus (among all Wiener polynomials of connected graphs of order n). To
do so, we will make use of the classical Eneström–Kakeya Theorem [19].
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