ELSEVIER

Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Note

On the maximum size of connected hypergraphs without a path of given length

Ervin Győri ^a, Abhishek Methuku ^b, Nika Salia ^b, Casey Tompkins ^a, Máté Vizer ^a,*

- ^a Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, Hungary
- ^b Central European University, Budapest, Hungary

ARTICLE INFO

Article history:
Received 21 October 2017
Received in revised form 28 April 2018
Accepted 3 June 2018

Keywords: Connected Erdős-Gallai Berge hypergraph

ABSTRACT

In this note we asymptotically determine the maximum number of hyperedges possible in an r-uniform, connected n-vertex hypergraph without a Berge path of length k, as n and k tend to infinity. We show that, unlike in the graph case, the multiplicative constant is smaller with the assumption of connectivity.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Let P_k denote a path consisting of k edges in a graph G. There are several notions of paths in hypergraphs, the most basic of which is due to Berge. A Berge path of length k is a set of k+1 distinct vertices $v_1, v_2, \ldots, v_{k+1}$ and k distinct hyperedges h_1, h_2, \ldots, h_k such that for $1 \le i \le k$, $v_i, v_{i+1} \in h_i$. A Berge path is also denoted simply as P_k , and the vertices v_i are called basic vertices. If $v_1 = v$ and $v_{k+1} = w$, then we call the Berge path a Berge v-w-path. A hypergraph $\mathcal H$ is called connected if for any $v \in V(\mathcal H)$ and $w \in V(\mathcal H)$ there is a Berge v-w-path.

A classical result of Erdős and Gallai [3] asserts that

Theorem 1 (Erdős–Gallai). Let G be a graph on n vertices not containing P_k as a subgraph, then

$$|E(G)|\leq \frac{(k-1)n}{2}.$$

In fact, Erdős and Gallai deduced this result as a corollary of the following stronger result about cycles,

Theorem 2 (Erdős–Gallai). Let G be a graph on n vertices with no cycle of length at least k, then

$$|E(G)| \leq \frac{(k-1)(n-1)}{2}.$$

Kopylov [5] and later Balister, Győri, Lehel and Schelp [1] determined the maximum number of edges possible in a connected P_k -free graph.

E-mail addresses: gyori.ervin@renyi.mta.hu (E. Győri), abhishekmethuku@gmail.com (A. Methuku), Salia_Nika@phd.ceu.edu (N. Salia), ctompkins496@gmail.com (C. Tompkins), vizermate@gmail.com (M. Vizer).

^{*} Corresponding author.

Theorem 3. Let G be a connected n-vertex graph with no P_k , n > k > 3. Then |E(G)| is bounded above by

$$\max\left\{\binom{k-1}{2}+n-k+1,\binom{\left\lceil\frac{k+1}{2}\right\rceil}{2}+\left\lfloor\frac{k-1}{2}\left\lfloor(n-\left\lceil\frac{k+1}{2}\right\rceil)\right\}\right.$$

Observe that, although the upper bound is smaller in the connected case, it is nonetheless the same asymptotically. Balister, Győri, Lehel and Schelp also determined the extremal cases.

Definition 1. The graph $H_{n,k,a}$ consists of 3 disjoint vertex sets A, B, C with |A| = a, |B| = n - k + a and |C| = k - 2a. $H_{n,k,a}$ contains all edges in $A \cup C$ and all edges between A and B. B is taken to be an independent set. The number of S-cliques in this graph is

$$f_s(n, k, a) = \binom{k-a}{s} + (n-k+a) \binom{a}{s-1}.$$

The upper bound of Theorem 3 is attained for the graph $H_{n,k,1}$ or $H_{n,k,\lfloor \frac{k-1}{2} \rfloor}$.

We now mention some recent results of Luo [6] which will be essential in our proof. Let $N_s(G)$ denote the number of s-vertex cliques in the graph G.

Theorem 4 (Luo). Let $n-1 \ge k \ge 4$. Let G be a connected n-vertex graph with no P_k , then

$$N_s(G) \leq \max \{f_s(n, k, \lfloor (k-1)/2 \rfloor), f_s(n, k, 1)\}.$$

As a corollary, she also showed

Corollary 1 (Luo). Let $n \ge k \ge 3$. Assume that G is an n-vertex graph with no cycle of length k or more, then

$$N_s(G) \leq \frac{n-1}{k-2} \binom{k-1}{s}.$$

Győri, Katona and Lemons [4] initiated the study of Berge P_k -free hypergraphs. They proved

Theorem 5 (Győri–Katona–Lemons). Let \mathcal{H} be an r-uniform hypergraph with no Berge path of length k. If k > r + 1 > 3, we have

$$|E(\mathcal{H})| \leq \frac{n}{k} \binom{k}{r}.$$

If $r \ge k > 2$, we have

$$|E(\mathcal{H})| \leq \frac{n(k-1)}{r+1}.$$

Moreover, in the first case, the bound is sharp (for infinitely many n) by taking vertex-disjoint cliques of size k. In the second case, the bound is sharp (for infinitely many n) by taking disjoint sets of size r + 1, each containing k - 1 hyperedges.

The case when k = r + 1 was settled later [2]:

Theorem 6 (Davoodi–Győri–Methuku–Tompkins). Let \mathcal{H} be an n-vertex r-uniform hypergraph. If $|E(\mathcal{H})| > n$, then \mathcal{H} contains a Berge path of length at least r + 1.

Our main result is the asymptotic upper bound for the connected version of Theorem 5, as n and k tend to infinity.

Theorem 7. Let $\mathcal{H}_{n,k}$ be a largest r-uniform connected n-vertex hypergraph with no Berge path of length k, then

$$\lim_{k \to \infty} \lim_{n \to \infty} \frac{|E(\mathcal{H}_{n,k})|}{k^{r-1}n} = \frac{1}{2^{r-1}(r-1)!}.$$

A construction yielding the bound in Theorem 7 is given by partitioning an n-vertex set into two classes A, of size $\left\lfloor \frac{k-1}{2} \right\rfloor$, and B, of size $n - \left\lfloor \frac{k-1}{2} \right\rfloor$ and taking $X \cup \{y\}$ as a hyperedge for every (r-1)-element subset X of A and every element $y \in B$. This hypergraph has no Berge P_k as we could have at most $\left\lfloor \frac{k-1}{2} \right\rfloor$ basic vertices in A and $\left\lfloor \frac{k-1}{2} \right\rfloor + 1$ basic vertices in B, thus yielding less than the required k+1 basic vertices.

Observe that in Theorem 5 the corresponding limiting value of the constant factor is $\frac{1}{r!}$ which is $\frac{2^{r-1}}{r}$ times larger than in the connected case (the ideas of the proof of Theorem 7 can also be used to give a simple proof of the following weaker version of Theorem 5: The limiting value of the constant factor in Theorem 5 is $\frac{1}{r!}$).

Download English Version:

https://daneshyari.com/en/article/8902900

Download Persian Version:

https://daneshyari.com/article/8902900

<u>Daneshyari.com</u>