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a b s t r a c t

Let c : V ∪ E → {1, 2, . . . , k} be a (not necessarily proper) total colouring of a graph
G = (V , E) with maximum degree ∆. Two vertices u, v ∈ V are sum distinguished if they
differ with respect to sums of their incident colours, i.e. c(u)+

∑
e∋uc(e) ̸= c(v)+

∑
e∋vc(e).

The least integer k admitting such colouring c under which every u, v ∈ V at distance
1 ≤ d(u, v) ≤ r in G are sum distinguished is denoted by tsr (G). Such graph invariants link
the concept of the total vertex irregularity strength of graphswith so-called 1-2-Conjecture,
whose concern is the case of r = 1. Within this paper we combine probabilistic approach
with purely combinatorial one in order to prove that tsr (G) ≤ (2 + o(1))∆r−1 for every
integer r ≥ 2 and each graph G, thus improving the previously best result: tsr (G) ≤ 3∆r−1.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The cornerstone of the field of vertex distinguishing graph colourings is the graph invariant called irregularity strength. For
a graph G = (V , E) it is usually denoted by s(G) and can be defined as the least integer k so that wemay construct an irregular
multigraph, i.e. a multigraph with pairwise distinct degrees of all vertices, of G by replacing each edge of G with at most k
copies, see [8]. This study thus originated from the basic fact that no graph G with more than one vertex is irregular itself
and related research on possible alternative definitions of an irregular graph, see e.g. [7]. Equivalently, s(G) is also defined
as the least k so that there exists an edge colouring c : E → {1, 2, . . . , k} such that for every pair u, v ∈ E, u ̸= v, the sum
of colours incident with u is distinct from the sum of colours incident with v. Note that s(G) exists only for graphs without
isolated edges and with at most one isolated vertex. It is known that s(G) ≤ n− 1, where n = |V |, for all such graphs, except
for K3, see [1,21]. This tight upper bound can however be improved in the case of graphs with minimum degree δ ≥ 1 to
s(G) ≤ 6⌈ n

δ
⌉ (that yields a better result whenever δ > 12 and for δ ∈ [7, 12] if n is larger than a small constant depending

on δ), see [16], and to s(G) ≤ (4 + o(1)) n
δ

+ 4 for graphs with δ ≥ n0.5 ln n, see [19]. Many interesting results, concepts and
open problems concerning this graph invariant can also be found e.g. in [6,9–13,16,18,23], and many others.

In [5], Bača et al. introduced a total version of the concept above. Given any graph G = (V , E) and a (not necessarily
proper) total colouring c : V ∪ E → {1, 2, . . . , k}, let

wc(v) := c(v) +

∑
u∈N(v)

c(uv) (1)

denote the weight of any vertex v ∈ V , which shall also be called the sum at v and denoted simply by w(v) in cases when c
is unambiguous from context. The least k for which there exists such colouring with w(u) ̸= w(v) for every u, v ∈ V , u ̸= v,
is called the total vertex irregularity strength of G and denoted by tvs(G). In [5] it was proved, among others, that for every
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graph Gwith n vertices, ⌈ n+δ
∆+1⌉ ≤ tvs(G) ≤ n + ∆ − 2δ + 1. Until now the best upper bounds (for graphs with δ > 3) assert

that tvs(G) ≤ 3⌈ n
δ
⌉ + 1, see [3], and tvs(G) ≤ (2+ o(1)) n

δ
+ 4 for δ ≥ n0.5 ln n, see [20]. Many other results e.g. for particular

graph families can also be found in [4,22,24,29] and other papers.
In this article we consider a distant generalization of tvs(G) from [25], motivated among others by the study on distant

chromatic numbers, see e.g. [17] for a survey concerning these. For any positive integer r , two distinct vertices at distance at
most r in G shall be called r-neighbours. We denote by N r (v) the set of all r-neighbours of v ∈ V in G, and set dr (v) = |N r (v)|.
The least integer k for which there exists a total colouring c : V ∪ E → {1, 2, . . . , k} such that there are no r-neighbours
u, v in G which are in conflict, i.e. with w(u) = w(v) (cf. (1)), we call the r-distant total irregularity strength of G, and denote
by tsr (G). It is known that tsr (G) ≤ 3∆r−1 for every graph G, see [25], also for a comment implying that a general upper
bound for tsr (G) cannot be (much) smaller than ∆r−1. In this paper we combine the probabilistic method with algorithmic
approach similar to those in e.g. [3,15,20,25] to prove that in fact tsr (G) ≤ (2 + o(1))∆r−1 (for r ≥ 2).

Theorem 1. For every integer r ≥ 2 there exists a constant ∆0 such that for each graph G with maximum degree ∆ ≥ ∆0,

tsr (G) ≤ 2∆r−1
+ 3∆r− 4

3 ln2∆ + 4, (2)

hence

tsr (G) ≤ (2 + o(1))∆r−1

for all graphs.

It is also worth mentioning that the case of r = 1 was introduced and considered separately in [27], where the well
known 1–2-Conjecture concerning this invariant was introduced. It is known that ts1(G) ≤ 3 for all graphs, see Theorem 2.8
in [15], even in case of a natural list generalization of the problem, see [31], though it is believed that the upper bound of 2
should be the optimal general upper bound in both cases, see [27,28,30].

A general upper bound for an analogous graph invariant to tsr (G) but defined for edge colourings can be found in [25].
This was improved in [26] by means of a probabilistic approach of a similar flavour as the one presented in this paper.

2. Probabilistic tools

We shall use probabilistic approach in the first part of the proof of Theorem 1, based on the Lovász Local Lemma, see
e.g. [2], combined with the Chernoff Bound, see e.g. [14] (Th. 2.1, page 26). We recall these below.

Theorem 2 (The Local Lemma). Let A1, A2, . . . , An be events in an arbitrary probability space. Suppose that each event Ai is
mutually independent of a set of all the other events Aj but at most D, and that Pr(Ai) ≤ p for all 1 ≤ i ≤ n. If

ep(D + 1) ≤ 1,

then Pr
(⋂n

i=1Ai
)

> 0.

Theorem 3 (Chernoff Bound). For any 0 ≤ t ≤ np,

Pr(BIN(n, p) > np + t) < e−
t2
3np and Pr(BIN(n, p) < np − t) < e−

t2
2np ≤ e−

t2
3np

where BIN(n, p) is the sum of n independent Bernoulli variables, each equal to 1 with probability p and 0 otherwise.

Note that if X is a random variable with binomial distribution BIN(n, p) where n ≤ k, thenwemay still apply the Chernoff

Bound above, even if we do not know the exact value of n, to prove that Pr(X > kp + t) < e−
t2
3kp (for t ≤ ⌊k⌋p).

3. Proof of Theorem 1

Fix an integer r ≥ 2. Within our proof we shall not specify ∆0. Instead, we shall assume that G = (V , E) is a graph with
sufficiently large maximum degree ∆, i.e. large enough so that all inequalities below are fulfilled.

We first partition V into a subset of vertices with relatively small degrees and a subset of those with large degrees:

S =

{
u ∈ V : d(u) ≤ ∆

2
3

}
;

B =

{
u ∈ V : d(u) > ∆

2
3

}
.

Moreover, for every v ∈ V , we denote S(v) = N(v) ∩ S, s(v) = |S(v)|, B(v) = N(v) ∩ B, b(v) = |B(v)|.
Now we randomly order the vertices of V into a sequence. For this goal, associate with every vertex v ∈ V a random

variable Xv ∼ U[0, 1] having the uniform distribution on [0, 1] where all these random variables Xv , v ∈ V are mutually
independent, or in other words pick a (real) number uniformly at random from the interval [0, 1] and associate it with v for
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