Note

Combinatorial and probabilistic formulae for divided symmetrization

F. Petrov

St. Petersburg Department of V. A. Steklov Institute of Mathematics of the Russian Academy of Sciences, St. Petersburg State University, Russian Federation

ARTICLE INFO

Article history:

Received 15 March 2017
Received in revised form 4 August 2017
Accepted 4 September 2017
Available online xxxx

Keywords:

Divided symmetrization
Sandpile models
Rational identities

A B S TRACT

Divided symmetrization of a function $f\left(x_{1}, \ldots, x_{n}\right)$ is symmetrization of the ratio

$$
D S_{G}(f)=\frac{f\left(x_{1}, \ldots, x_{n}\right)}{\prod\left(x_{i}-x_{j}\right)},
$$

where the product is taken over the set of edges of some graph G. We concentrate on the case when G is a tree and f is a polynomial of degree $n-1$, in this case $D S_{G}(f)$ is a constant function. We give a combinatorial interpretation of the divided symmetrization of monomials for general trees and probabilistic game interpretation for a tree which is a path. In particular, this implies a result by Postnikov originally proved by computing volumes of special polytopes, and suggests its generalization.
© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Let V be a set of variables, $|V|=m$, say, $V=\left\{x_{1}, \ldots, x_{m}\right\}$ (but further, we need and allow sets such as $\left\{x_{2}, x_{3}, x_{9}\right\}$). It is convenient to think that V is well ordered: $x_{1}<x_{2}<\cdots<x_{m}$. For a rational function φ, with coefficients in some field, of variables from V, define its symmetrization as

$$
\operatorname{Sym} \varphi=\sum_{\pi} \varphi\left(\pi_{1}, \ldots, \pi_{m}\right)
$$

where summation is taken over all m ! permutations π of the variables.
Let f be polynomial of degree d in the variables from V. Then, its divided symmetrization

$$
D S(f):=\operatorname{Sym}\left(\frac{f}{\prod_{x, y \in V, x<y}(x-y)}\right)
$$

is also polynomial of degree not exceeding $d-m(m-1) / 2$. In particular, it vanishes identically when $d<m(m-1) / 2$. The reason why $D S(f)$ is a polynomial is the following. Fix variables x, y and partition all summands into pairs corresponding to permutations ($\pi, \sigma \pi$), where σ is a transposition of x and y. We see that in the sum of any pair, the multiple $x-y$ in the denominator gets cancelled. Thus every multiple is cancelled and so we get polynomial. The symmetrization operators have applications, for instance, in the theory of symmetric functions, see Chapter 7 of the A. Lascoux's book [2].

[^0]Let $G(V, E)$ be a graph on the set of vertices V. We view E as a set of pairs $(x, y) \in V^{2}, x<y$. We may consider partial symmetrization in G, that is,

$$
D S_{G}(f)=\operatorname{Sym}\left(\frac{f}{\prod_{(x, y) \in E}(x-y)}\right)
$$

Of course this is a polynomial again of degree at most $d-|E|$ due to the obvious formula

$$
D S_{G}(f)=D S\left(f \cdot \prod_{x<y,(x, y) \notin E}(x-y)\right)
$$

If we restrict $D S_{G}$ to polynomials of degree at most $|E|$, we get a linear functional. The kernel K_{G} of this functional is particularly structured. First of all, all polynomials of degree less then d lie in K_{G}. Next, if f has a symmetric factor, i.e., $f=g h$, where g is symmetric and non-constant, then $f \in K_{G}$. This is true because of the formula $D S_{G}(g h)=g D S_{G}(h)$, and the second multiple being equal to 0 since $\operatorname{deg} h<|E|$.

Assume that G is disconnected. That is, $V=U \sqcup W$, and there are no edges of G between U and $W: E=E U \sqcup E W$, where $E U, E W$ are sets of edges joining vertices of U, W respectively. Denote the corresponding subgraphs of G by $G U=(U, E U)$ and $G W=(W, E W)$. Note that both U, W are well ordered sets of variables and thus the above definitions still apply to the subgraphs GU, GW.

Any polynomial f may be represented as a sum $\sum u_{i} w_{i}$, where the polynomials u_{i} depend only on variables from U, while w_{i} depends only on variables from W (and, of course, the degree $\operatorname{deg} u_{i}+\operatorname{deg} w_{i}$ of each summand does not exceed $\operatorname{deg} f$). Assume that $\operatorname{deg} f \leqslant|E|$. Then

$$
\begin{equation*}
D S_{G}(f)=\binom{m}{|U|} \sum_{i} D S_{G U}\left(u_{i}\right) \cdot D S_{G W}\left(w_{i}\right) \tag{1}
\end{equation*}
$$

(the binomial factor comes from fixing the sets of variables $\pi(U)$ and $\pi(V)$. If deg $u_{i}<|E U|$ then the symmetrization $D S_{G U}\left(u_{i}\right)$ is just 0 , analogously if $\operatorname{deg} w_{i}<|E W|$. If $\operatorname{deg} u_{i}=|E U|$, $\operatorname{deg} w_{i}=|E W|$, then both $D S_{G U}\left(u_{i}\right), D S_{G W}\left(w_{i}\right)$ are constants and therefore do not depend on the sets of variables $\pi(U), \pi(V)$). It follows that $f \in K_{G}$ if for any i either $u_{i} \in K_{G U}$ or $w_{i} \in K_{G W}$. As already noted above, it is so unless $\operatorname{deg} u_{i}=|E U|, \operatorname{deg} w_{i}=|E W|$. If f has a factor symmetric in the variables from U, then $D S_{G U}\left(u_{i}\right)=0$.

Next observation. If $E^{\prime} \subset E$ and $f=h \cdot \prod_{(x, y) \in E^{\prime}}(x-y)$ then $D S_{G}(f)=D S_{G \backslash E^{\prime}}(h)$. Combining this with our previous argument, we get the following lemma.

Lemma 1. If $E^{\prime} \subset E$ and $U \subset V$ is a connected component in $G \backslash E^{\prime}, f$ is divisible by $h \prod_{(x, y) \in E^{\prime}}(x-y)$, where h is symmetric in variables from U, then $f \in K_{G}$.

Denoting by I_{G} the set of polynomials v such that $v h \in K_{G}$ provided that deg $v h \leqslant|E|$ (it is sort of an ideal, but the set of polynomials with restricted degree is not a ring), we have found some elements in I_{G} : all symmetric polynomials and all polynomials like those in Lemma 1.

Next, we consider the case of partial divided symmetrization w.r.t. tree G on n vertices of a polynomial $f, \operatorname{deg} f=n-1$. This is a linear functional and we give combinatorial formulae for its values in a natural monomial base.

2. Tree

Definition 1. Let $T=(V, E)$ be a tree on a well ordered set $V,|V|=n$. Let $C:=\prod_{x \in V} x^{w(x)+1}$ be a monomial of degree $n-1$, where we call $w(x) \in\{-1,0,1,2, \ldots\}$ a weight of a vertex x. The total weight of all vertices equals -1 . For each edge $e=(x, y) \in E, x<y$, consider two connected components of the graph $T \backslash e$. The total weight is negative for exactly one of them. If this component contains y, call edge e regular, else call it inversive. Define sign $\operatorname{sign}(C)$ as $(-1)^{\text {\{number of inversive edges\} }}$. Call a permutation π of the set V to be C-acceptable if for all edges $e=(x, y), \pi(x)<\pi(y)$ if and only if e is regular.

Theorem 2. The partial divided symmetrization $D S_{T}(C)$ of the monomial C equals the number of C-acceptable permutations times $\operatorname{sign}(C)$.

Proof. Induction on n. The base case $n=1$ is obvious. Assume that $n>1$ and the assertion is valid for $n-1$. For any monomial C denote by $\tau(C)$ the number of C-acceptable permutations times $\operatorname{sign}(C)$. We need to check that $\tau(C)=D S_{T}(C)$ for all C. To this end, it suffices to verify the following properties of τ and $D S_{T}$:
(i) $\tau(C)-D S_{T}(C)$ does not depend on C;
(ii) $\sum_{x \in V} \tau\left(x^{n-1}\right)=0=\sum D S_{T}\left(x^{n-1}\right)$.

We start with (i). In turn, it suffices to prove that $\tau\left(C_{1} x\right)-D S_{T}\left(C_{1} x\right)=\tau\left(C_{1} y\right)-D S_{T}\left(C_{1} y\right)$, where C_{1} is a monomial of degree $n-2$ and $e=(x, y) \in E, x<y$, is an edge of T. We have

$$
D S_{T}\left(C_{1} x\right)-D S_{T}\left(C_{1} y\right)=D S_{T}\left(C_{1}(x-y)\right)=D S_{T \backslash e}\left(C_{1}\right)
$$

https://daneshyari.com/en/article/8903108

Download Persian Version:

https://daneshyari.com/article/8903108

Daneshyari.com

[^0]: E-mail address: f.v.petrov@spbu.ru.

