Note

On the girth and diameter of generalized Johnson graphs

Louis Anthony Agong ${ }^{\text {a }}$, Carmen Amarra ${ }^{\text {a }}$, John S. Caughman ${ }^{\text {b,* }}$, Ari J. Herman ${ }^{\text {b }}$, Taiyo S. Terada ${ }^{\text {b }}$
${ }^{\text {a }}$ Institute of Mathematics, University of the Philippines Diliman, Philippines
${ }^{\text {b }}$ Department of Mathematics \mathcal{E} Statistics, Portland State University, Portland, OR, USA

A R TICLE IN F O

Article history:

Received 31 August 2016
Accepted 11 August 2017
Available online xxxx

Keywords:

Girth
Diameter
Generalized Johnson graphs
Uniform subset graphs

Abstract

Let $v>k>i$ be non-negative integers. The generalized Johnson graph, $J(v, k, i)$, is the graph whose vertices are the k-subsets of a v-set, where vertices A and B are adjacent whenever $|A \cap B|=i$. In this article, we derive general formulas for the girth and diameter of $J(v, k, i)$. Additionally, we provide a formula for the distance between any two vertices A and B in terms of the cardinality of their intersection.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Let $v>k>i$ be non-negative integers. The generalized Johnson graph, $X=J(v, k, i)$, is the graph whose vertices are the k-subsets of a v-set, where vertices A and B are adjacent whenever $|A \cap B|=i$. Generalized Johnson graphs were introduced by Chen and Lih in [2]. Special cases include the Kneser graphs $J(v, k, 0)$, the odd graphs $J(2 k+1, k, 0)$, and the Johnson graphs $J(v, k, k-1)$. The Johnson graph $J(v, k, k-1)$ is well known to have diameter $\min \{k, v-k\}$, and formulas for the distance and diameter of Kneser graphs were proved in [5].

Generalized Johnson graphs have also been studied under the name uniform subset graphs, and a result in [3] offers a general formula for the diameter of $J(v, k, i)$. However, that formula gives incorrect values when $i>\frac{2}{3} k$, an important case that includes the Johnson graphs. In this paper we extend (and, in places, correct) those expressions for the diameter of generalized Johnson graphs and we additionally provide a formula for the girth.

Note that it is possible to extend the definition of $X=J(v, k, i)$ to include $v \geq k \geq i$. However, X is an empty graph when $k=i$ or $v=k$. If $v=2 k$ and $i=0$, then X is isomorphic to the disjoint union of copies of K_{2}. Furthermore, by taking complements, the graphs $J(v, k, i)$ and $J(v, v-k, v-2 k+i)$ are easily seen to be isomorphic (see [4, p. 11]). For the remainder of this article, we will be concerned with generalized Johnson graphs that are connected, so we make the following global definition.

Definition 1.1. Assume $v>k>i$ are nonnegative integers, and let $X=J(v, k, i)$ denote the corresponding generalized Johnson graph. To avoid trivialities, further assume that $v \geq 2 k$, and that $(v, k, i) \neq(2 k, k, 0)$.

[^0]

Fig. 1. Diagram for proof of Lemma 2.1.

2. Girth

In this section we derive an expression for the girth $g(X)$ of a generalized Johnson graph, X. We begin with a lemma that characterizes when two vertices have a common neighbor.

Lemma 2.1. With reference to Definition 1.1, let A and B be vertices and let $x=|A \cap B|$. Then A and B have a common neighbor if and only if $x \geq \max \{-v+3 k-2 i, 2 i-k\}$.

Proof. Vertices A and B have a common neighbor C if and only if there exists a nonnegative integer s, such that every region in the above diagram (Fig. 1) has nonnegative size.
By simplifying the resulting inequalities, we find that A and B have a common neighbor if and only if there exists $s \in \mathbb{Z}$, such that

$$
\max \{0, i+x-k, 2 i-k\} \leq s \leq \min \{x, i, v-3 k+2 i+x\}
$$

Such an integer s exists if and only if the expression on the left-hand side above does not exceed the expression on the right-hand side. Under our global assumptions, this is equivalent to $x \geq \max \{-v+3 k-2 i, 2 i-k\}$.

Lemma 2.2. With reference to Definition 1.1, the girth $g(X)=3$ if and only if $v \geq 3(k-i)$.
Proof. The graph X contains a 3-cycle if and only if there exist adjacent vertices A and B that have a common neighbor. By Lemma 2.1, this occurs if and only if $i \geq \max \{-v+3 k-2 i, 2 i-k\}$. Since $i \geq 2 i-k$ holds in all $J(v, k, i)$ graphs, this condition is equivalent to $v \geq 3(k-i)$.

A sufficient condition for the girth to be at most 4 is the existence of a 4-cycle.
Lemma 2.3. With reference to Definition 1.1, if $(v, k, i) \neq(2 k+1, k, 0)$ then $g(X) \leq 4$.
Proof. We proceed in two cases.
Case $1: i \geq 2$ or $v>2 k+1$. In this case we get that $v \geq 2 k-i+2$. So we can find disjoint sets, $A_{1}, A_{2}, A_{3}, A_{4}$, and B_{1}, B_{2}, and C such that $\left|A_{1}\right|=\left|A_{2}\right|=\left|A_{3}\right|=\left|A_{4}\right|=1$, and $\left|B_{1}\right|=\left|B_{2}\right|=k-i-1$, and $|C|=i$. Then

$$
A_{1} \cup B_{1} \cup C, \quad A_{2} \cup B_{2} \cup C, \quad A_{3} \cup B_{1} \cup C, \quad A_{4} \cup B_{2} \cup C
$$

is a 4-cycle in X .
Case 2: $i=1$. In this case, since $v \geq 2 k$, we can find disjoint sets $A_{1}, A_{2}, A_{3}, A_{4}$ and B_{1}, B_{2} such that $\left|A_{1}\right|=\left|A_{2}\right|=\left|A_{3}\right|=$ $\left|A_{4}\right|=1$ and $\left|B_{1}\right|=\left|B_{2}\right|=k-2$. Then

$$
A_{1} \cup A_{2} \cup B_{1}, \quad A_{2} \cup A_{3} \cup B_{2}, \quad A_{3} \cup A_{4} \cup B_{1}, \quad A_{4} \cup A_{1} \cup B_{2}
$$

is a 4-cycle in X.
Combining the above lemmas, we obtain a general expression for the girth.
Theorem 2.4. With reference to Definition 1.1, the girth of X is given by

$$
g(X)= \begin{cases}3 & \text { if } v \geq 3(k-i) \\ 4 & \text { if } v<3(k-i) \text { and }(v, k, i) \neq(2 k+1, k, 0) \\ 5 & \text { if }(v, k, i)=(5,2,0) ; \\ 6 & \text { if }(v, k, i)=(2 k+1, k, 0) \text { and } k>2\end{cases}
$$

https://daneshyari.com/en/article/8903150

Download Persian Version:
https://daneshyari.com/article/8903150

Daneshyari.com

[^0]: * Corresponding author.

 E-mail address: caughman@pdx.edu (J.S. Caughman).

