Note

A panconnectivity theorem for bipartite graphs

a Nagakura 2722, Karuizawa, Nagano 389-0111, Japan
${ }^{\text {b }}$ University of Memphis, Memphis, TN 38152, United States
${ }^{\text {c }}$ University of Louisville, Louisville, KY 40292, United States
${ }^{\text {d }}$ Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, Budapest, Hungary
${ }^{e}$ Nihon University, Tokyo 101-8308, Japan

ARTICLE INFO

Article history:

Received 2 June 2017
Accepted 16 August 2017
Available online xxxx

Keywords:

Bipartite graph
Circumference
Panconnectivity

Abstract

Let G be a simple $m \times n$ bipartite graph with $m \geq n$. We prove that if the minimum degree of G satisfies $\delta(G) \geq m / 2+1$, then G is bipanconnected: for every pair of vertices x, y, and for every appropriate integer $2 \leq \ell \leq 2 n$, there is an x, y-path of length ℓ in G.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

It was proved by Williamson in [7] that the minimum degree condition $\delta(G) \geq n / 2+1$ implies the panconnectivity of a simple graph G of order n : for every pair of vertices x, y, and for every integer $2 \leq \ell \leq n-1$, there is an x, y-path of length ℓ in G. Panconnectivity, related concepts and applications are investigated in [4] and [6]. The case of paths of any odd length between vertices in different partite sets of a balanced bipartite graph was considered by Amar et al. in [1]. In this paper we deal with the Panconnectivity of bipartite graphs in general, and prove Theorem 1 we needed to apply in [3].

Let G be a (simple) bipartite graph with partite sets A and $B,|A| \geq|B|$, and let $x, y \in A \cup B$. Let $\ell \geq 2$ be an integer such that
$\ell \leq 2|B|-1$ and it is odd, if $x \in A$ and $y \in B$,
$\ell \leq 2|B|-2$ and it is even, if $x, y \in B$,
$\ell \leq 2|B|$ and it is even, if $x, y \in A$ and $|A|>|B|$.
Then we say that G is bipanconnected, if for every $x, y \in V(G)$ and for every appropriate integer ℓ as above, G has an x, y-path of length ℓ.

A bipartite graph with partite sets of cardinality m and n is called an $m \times n$ bigraph. Our main result is a bipartite version of Williamson's theorem, and it extends the special case $m=n$ proved by Amar et al. in [1].

Theorem 1. Let G be an $m \times n$ bigraph with $m \geq n \geq 2$. If $\delta(G) \geq m / 2+1$, then G is bipanconnected.
The minimum degree condition in Theorem 1 cannot be relaxed. As an example, let $m=2 t+1, t \geq 1$, and take two copies of a complete $(t+1) \times(t+1)$ bigraph sharing a common edge $x y$. Then $\delta=t+1=(m+1) / 2$, and for $\ell=m+2, m+4, \ldots, 2 m-1$, the bigraph has no x, y-path of length ℓ.

In our proof of Theorem 1 we use Jackson's theorem on the circumference of a bipartite graph. The maximum cycle length, $c(G)$, of a graph G is called its circumference. A connected graph with no cut vertex is called 2-connected.

[^0]Theorem 2 (Jackson [5]). Let G be a 2-connected $m \times n$ bigraph with $m \geq n$, and let s and t be the minimum degree in the partite sets of cardinality m and n, respectively. Then $\frac{1}{2} c(G) \geq \min \{n, s+t-1,2 t-2\}$. Moreover, if $m=n$ and $s=t=\delta(G)$, then $\frac{1}{2} c(G) \geq \min \{m, 2 \delta(G)-1\}$.

2. Proof of Theorem 1

We adapt basic graph theory notations like in [2]. Let G be a simple graph. The set of all adjacencies of a vertex $v \in V(G)$ in $S \subset V(G)$ is denoted by $N_{S}(v)$, and we set $d_{S}(v)=\left|N_{S}(v)\right|$.

If C is a cycle and $v \in C$, then v^{+}and v^{-}will, respectively, denote the successor and the predecessor of v according to a fixed orientation of C. The reverse orientation of C will be denoted by \overleftarrow{C}.

For $S \subseteq C$, the set of all successors and predecessors of the vertices in S will be denoted by S^{+}and S^{-}, respectively. The vertex at distance k following $v \in C$ along C, called the k th successor of v, is denoted by v^{+k}. We denote by S^{+k} the set of the k th successors of all vertices in S. Similar notation will be used for the k th predecessors, namely v^{-k} and S^{-k}.

For $x, y \in C$ a subpath of C with end vertices x and y is denoted by (x, C, y) or $(x, \overleftarrow{C}, y)$. According to these notations, if $k<|C|$, then $\left(v, C, v^{+k}\right),\left(v^{+k}, \overleftarrow{C}, v\right)$ or $\left(v^{-k}, C, v\right)$ are all subpaths of length k in C.

Let G be an $m \times n$ bigraph with $m \geq n$ and satisfying $\delta(G) \geq m / 2+1$. Given $x, y \in V(G)$ and an appropriate length ℓ, we may assume that $\ell \geq 4$. Indeed, from the minimum degree condition it follows that any two vertices of the same partite set have at least two common neighbors; this implies that there is an x, y-path of length 2 or 3 . The theorem is obviously true for complete bigraphs; this is implied by the degree condition, for all $n \leq 4$, except the case $m=n=4$. In this exceptional case G is a supergraph of the 3-regular 4×4 bigraph, $K_{4,4}-4 K_{2}$, which is bipanconnected, by inspection. From now on we assume that $m \geq n \geq 5$.

Let A and B be the partite classes of G, where $|A|=m,|B|=n$. For a set $S \subseteq V(G)$ we use $S_{A}=S \cap A$ and $S_{B}=S \cap B$; similarly, for a subgraph $H \subseteq G$ we use H_{A} and H_{B} to denote the partite classes of H.

For $k \geq 1$, a connected graph is k-connected, if the removal of less than k vertices does not disconnect the graph. We need the following simple lemma.

Lemma 3. For $m \geq n \geq 5$, let G be an $m \times n$ bigraph. If $\delta(G) \geq m / 2+1$, then G is 4-connected.
Proof. Let $S \subset V(G)$ be a cut set of G. Due to the minimum degree condition any two vertices in one partite set have at least two common neighbors. This means that either $A \backslash S$ belongs to one connected component G_{1} of $G-S$, or $\left|S_{B}\right| \geq 2$. In the first case the degree of any vertex w of $B \backslash S$ not in G_{1} satisfies $\left|S_{A}\right| \geq d(w) \geq\lceil m / 2\rceil+1 \geq 4$, and $|S| \geq 4$ follows. In the second case we have $\left|S_{B}\right| \geq 2$, and in the same way, by symmetry, we obtain $\left|S_{A}\right| \geq 2$. Thus $|S| \geq 4$ follows.

Depending on G and the location of x and y there are three cases to consider (see the definition of bipanconnectivity).
Case 1: $x \in A, y \in B, \ell$ is odd, and $5 \leq \ell \leq 2 n-1$.
By Lemma 3, G is 4 -connected. Thus $H=G-\{x, y\}$ is a 2-connected $m^{\prime} \times n^{\prime}$ bigraph, where $m^{\prime}=m-1, n^{\prime}=n-1$. Since $\delta(H) \geq m / 2$, by Theorem 2 we obtain

$$
\frac{1}{2} c(H) \geq\left\{\begin{array}{l}
\min \{n-1, m-1\}=n-1, \text { for } n=m \\
\min \{n-1, m-1, m-2\}=n-1, \text { for } n<m
\end{array}\right.
$$

Therefore, if C is a longest cycle of H, then $C_{B}=B \backslash\{y\}$, hence $d_{C}(x) \geq m / 2$.
First suppose that y has all neighbors in $C_{A} \cup\{x\}$. If there is a vertex $v \in N_{C}(x)^{+(\ell-2)} \cap N_{C}(y)$, then $\left(x, v^{-(\ell-2)}, C, v, y\right)$ is an x, y-path of length ℓ. If $N_{C}(x)^{+(\ell-2)} \cap N_{C}(y)=\emptyset$, then using $d_{C}(y) \geq m / 2$ we obtain

$$
m \leq d_{C}(x)+d_{C}(y)=\left|N_{C}(x)^{+(\ell-2)}\right|+\left|N_{C}(y)\right| \leq\left|C_{A}\right| \leq m-1,
$$

a contradiction.
Now suppose that $y y^{\prime}$ is an edge of $G-C$ for some $y^{\prime} \neq x$. As before, if $v \in N_{C}(x)^{+(l-3)} \cap N_{C}\left(y^{\prime}\right) \neq \emptyset$, then $\left(x, v^{-(\ell-3)}, C, v, y^{\prime}, y\right)$ is a required x, y-path. Otherwise, since $d_{C}\left(y^{\prime}\right) \geq m / 2$, we have

$$
m \leq d_{C}(x)+d_{C}\left(y^{\prime}\right) \leq\left|N_{C}(x)^{+(l-3)}\right|+\left|N_{C}\left(y^{\prime}\right)\right| \leq\left|C_{B}\right| \leq m-1
$$

a contradiction.
Case 2: $x, y \in B, \ell$ is even, and $4 \leq \ell \leq 2 n-2$.
By Lemma 3, $H=G-\{x, y\}$ is a 2-connected $m^{\prime} \times n^{\prime}$ bigraph where $m^{\prime}=m, n^{\prime}=n-2$. Furthermore, $d_{H}(v) \geq m / 2-1$, for $v \in A$, and $d_{H}(v) \geq m / 2+1$, for $v \in B \backslash\{x, y\}$. By Theorem 2, we obtain

$$
\frac{1}{2} c(H) \geq \min \{n-2, m-1, m\}=n-2
$$

hence for a longest cycle C of H we have $C_{B}=B \backslash\{x, y\}$.

https://daneshyari.com/en/article/8903153

Download Persian Version:
https://daneshyari.com/article/8903153

Daneshyari.com

[^0]: * Correspondence to: 10401 Christina Court, Louisville, KY 40223, United States.

 E-mail address: j0lehe01@louisville.edu (J. Lehel).

