Diameter bounds for geometric distance-regular graphs

Sejeong Bang
Department of Mathematics, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea

ARTICLE INFO

Article history:

Received 17 November 2016
Received in revised form 23 August 2017
Accepted 28 August 2017
Available online xxxx

Keywords:

Geometric distance-regular graph
Diameter bound
Smallest eigenvalue
Johnson graph
Induced subgraph $K_{2,1,1}$

Abstract

A non-complete distance-regular graph is called geometric if there exists a set \mathcal{C} of Delsarte cliques such that each edge lies in exactly one clique in \mathcal{C}. Let Γ be a geometric distanceregular graph with diameter $D \geq 3$ and smallest eigenvalue θ_{D}. In this paper we show that if Γ contains an induced subgraph $K_{2,1,1}$, then $D \leq-\theta_{D}$. Moreover, if $-\theta_{D}-1 \leq D \leq-\theta_{D}$ then $D=-\theta_{D}$ and Γ is a Johnson graph. We also show that for $(s, b) \notin\{(11,11),(21,21)\}$, there are no distance-regular graphs with intersection array $\{4 s, 3(s-1), s+1-b ; 1,6,4 b\}$ where s, b are integers satisfying $s \geq 3$ and $2 \leq b \leq s$. As an application of these results, we classify geometric distance-regular graphs with $D \geq 3, \theta_{D} \geq-4$ and containing an induced subgraph $K_{2,1,1}$. © 2017 Elsevier B.V. All rights reserved.

1. Introduction

For a distance-regular graph Γ with valency k, diameter $D \geq 2$ and smallest eigenvalue θ_{D}, any clique C in Γ satisfies

$$
\begin{equation*}
|C| \leq 1-\frac{k}{\theta_{D}} \tag{1}
\end{equation*}
$$

(see [5, Proposition 4.4.6(i)]). This bound was shown by Delsarte [6] for strongly regular graphs and Godsil generalized it for distance-regular graphs. A clique of exactly $1-k / \theta_{D}$ vertices is called a Delsarte clique. The following notion of a geometric distance-regular graph was introduced by Godsil [9]. A non-complete distance-regular graph Γ is called geometric if there exists a set \mathcal{C} of Delsarte cliques such that each edge of Γ lies in exactly one clique in \mathcal{C}. In this case we say that Γ is geometric with respect to \mathcal{C}. Note here that for a geometric distance-regular graph, θ_{D} is integral. There are many examples of geometric distance-regular graphs, such as Hamming graphs, Johnson graphs, Grassmann graphs, bilinear forms graphs, regular near $2 D$-gons and bipartite distance-regular graphs.

Let Γ be a geometric distance-regular graph with valency k, diameter $D \geq 2$ and smallest eigenvalue θ_{D}. Note that a distance-regular graph has no induced subgraph $K_{2,1,1}$ if and only if it is of order (s, t) with $s=a_{1}+1$ and $t=\frac{b_{1}}{a_{1}+1}$ (i.e., locally the disjoint union of $t+1$ cliques of size s). It follows by [2, Theorem 1.4] that for Γ neither bipartite nor complete multipartite, if Γ contains an induced subgraph $K_{2,1,1}$ then $D \leq-\frac{k}{\theta_{D}}$. In [10, Proposition 4.3], Koolen and Bang showed that if Γ satisfies $c_{2} \geq 2$, then $D<\left(-\theta_{D}\right)^{2}$. In this paper, we show in Theorem 1.1 that if Γ contains an induced subgraph $K_{2,1,1}$, then $D \leq-\theta_{D}$. Moreover, we prove that if $D \geq 3$ then a Johnson graph of diameter D is the only geometric distance-regular graph satisfying $D \geq-\theta_{D}-1$.

[^0]Theorem 1.1. Fix an integer $m \geq 2$. Suppose that Γ is a geometric distance-regular graph with diameter $D \geq 2$ and smallest eigenvalue $-m$. If Γ contains an induced subgraph $K_{2,1,1}$, then

$$
D \leq m
$$

Moreover, if $D \geq \max \{3, m-1\}$ then $D=m$ and Γ is a Johnson graph.
To prove Theorem 1.1, we first need to consider geometric distance-regular graphs with diameter three. A geometric distance-regular graph with diameter three and smallest eigenvalue $-m$ has intersection array

$$
\begin{equation*}
\left\{m s,(m-1)\left(s+1-\psi_{1}\right),\left(m-\tau_{2}\right)\left(s+1-\psi_{2}\right) ; 1, \tau_{2} \psi_{1}, m \psi_{2}\right\} \tag{2}
\end{equation*}
$$

where $1 \leq \tau_{2}<m$ and $1 \leq \psi_{1} \leq \psi_{2} \leq s$ are all integers (see Lemma 2.1(i)-(ii)). There are many examples of distanceregular graphs with intersection array (2), such as Hamming graphs $H(3, q)(q \geq 2)$, Johnson graphs $J(n, 3)(n \geq 6)$, Grassmann graphs $J_{q}(n, 3)(n \geq 6)$, bilinear forms graphs $H_{q}(n, 3)$ and the Doob graph of diameter 3. The Doob graph of diameter 3 is not geometric and it has the same intersection array with the Hamming graph $H(3,4)$.

Note that any geometric distance-regular graph with diameter three, smallest eigenvalue -3 and $c_{2}=2$ has intersection array (2) with $\left(m, \tau_{2}, \psi_{1}\right)=(3,2,1)$ (cf. Lemma 2.1(iv)). In [3, Theorem 1.3], Bang and Koolen showed that if a distanceregular graph has intersection array (2) with $\left(m, \tau_{2}, \psi_{1}\right)=(3,2,1)$ and $1<\psi_{2}<s$, then $\left(s, \psi_{2}\right)=(15$, 9$)$. Using together with results [1, Theorem 4.3] and [7], this enables us to classify geometric distance-regular graphs with diameter $D \geq 3$, smallest eigenvalue -3 and $c_{2} \geq 2$ (see [3, Theorem 1.4]).

Note that any geometric distance-regular graph with diameter three, smallest eigenvalue -4 and $c_{2}=6$ has intersection array (2) with $\left(m, \tau_{2}, \psi_{1}\right)=(4,3,2)$ (i.e., it has intersection array (3)). We show in Theorem 1.2 that there are no distanceregular graphs with intersection array (3) with a possible exception when $(s, b) \in\{(11,11),(21,21)\}$. In particular, if $(s, b) \in\{(11,11),(21,21)\}$ then it is not geometric. Using Theorem 1.2, we show in Theorem 1.1 that there are no geometric distance-regular graphs with diameter $D=-\theta_{D}-1 \geq 3$ and containing an induced subgraph $K_{2,1,1}$.

Theorem 1.2. If Γ is a distance-regular graph with intersection array

$$
\begin{equation*}
\{4 s, 3(s-1), s+1-b ; 1,6,4 b\} \quad \text { where } s \geq 3 \text { and } 2 \leq b \leq s \tag{3}
\end{equation*}
$$

then $(s, b) \in\{(11,11),(21,21)\}$. In particular, Γ is antipodal but not geometric.
Neumaier [12] showed that for a given integer $m \geq 2$, except for a finite number of graphs, any geometric strongly regular graph with smallest eigenvalue $-m$ is either a Steiner graph or a Latin square graph. There are no geometric distance-regular graphs with diameter $D \geq 3$, smallest eigenvalue -2 and $c_{2} \geq 2$ (see [5 , Theorems 3.12.2 and 4.2.16]). Bang [1 , Theorem 4, 3] showed that the Johnson graph $J(n, 3)(n \geq 6)$ is the only geometric distance-regular graph with diameter $D \geq 3$ and smallest eigenvalue -3 which contains an induced subgraph $K_{2,1,1}$. This result can be obtained by Theorem 1.1 with $m=3$. Using Theorem 1.1, we show the following result for $\theta_{D} \geq-4$.

Corollary 1.3. Suppose that Γ is a geometric distance-regular graph with diameter $D \geq 3$ and smallest eigenvalue at least -4. If Γ contains an induced subgraph $K_{2,1,1}$, then Γ is the Johnson graph $J(n, D)(n \geq 2 D)$, where $D \in\{3,4\}$.

This paper is organized as follows. In Section 2, we review some notations and basic concepts. In Section 3, we prove Theorem 1.2 , which implies that there are no geometric distance-regular graphs with diameter three, smallest eigenvalue -4 and $c_{2}=6$. To show Theorem 1.2 we consider two cases, $s \leq 35$ and $s>35$. We prove that if $s \leq 35$ then $(s, b) \in\{(11,11),(21,21)\}$ and Γ is not geometric for these two cases (see Lemmas 3.1 and 3.2). On the other hand, if $s>35$ then we first show that Γ must be geometric by using Proposition 3.4, and Γ has only integral eigenvalues (see Lemma 3.3). Using Lemmas 3.2 and 3.3 we prove that there are no geometric distance-regular graphs with intersection array (3) with $s>35$. In Section 4, we prove Theorem 1.1 and Corollary 1.3. In Lemma 4.1 we show that for a non-complete geometric distance-regular graph, if $\psi_{1} \geq 2$ then the sequence $\left(\tau_{i}\right)_{1 \leq i \leq D}$ is strictly increasing. Using this we show in Theorem 1.1 that if a non-complete geometric distance-regular graph Γ contains an induced subgraph $K_{2,1,1}$ then $D \leq-\theta_{D}$. In particular, we show in Theorem 1.1 that if $D=-\theta_{D} \geq 3$ then Γ is a Johnson graph, and there are no geometric distance-regular graphs with $D=-\theta_{D}-1 \geq 3$ by using Theorem 1.2. As an application of Theorem 1.1, we classify geometric distance-regular graphs with $D \geq 3$ and $\theta_{D} \geq-4$ which are not locally a disjoint union of cliques (Corollary 1.3).

2. Preliminaries

All graphs in this paper are finite, undirected and simple. Let Γ be a connected graph. For any two vertices x, y in the vertex set $V(\Gamma)$ of Γ, the distance $d(x, y)$ between x and y is the length of a shortest path between them in Γ, and the diameter D is the maximum distance between any two vertices of Γ. For a vertex $x \in V(\Gamma)$, define $\Gamma_{i}(x):=\{z \in V(\Gamma) \mid d(x, z)=i\}$ $(0 \leq i \leq D)$. In addition, define $\Gamma_{-1}(x)=\emptyset$ and $\Gamma_{D+1}(x)=\emptyset$. Let $v:=|V(\Gamma)|$. The adjacency matrix A_{Γ} of Γ is the $(v \times v)$-matrix with rows and columns are indexed by $V(\Gamma)$, where the (x, y)-entry of A_{Γ} is 1 if $d(x, y)=1$ and 0 otherwise.

https://daneshyari.com/en/article/8903168

Download Persian Version:

https://daneshyari.com/article/8903168

Daneshyari.com

[^0]: E-mail address: sjbang@ynu.ac.kr.

