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a b s t r a c t

For an oriented graph G, let f (G) denote the maximum chromatic
number of an acyclic subgraph of G. Let f (n) be the smallest integer
such that every oriented graph G with chromatic number larger
than f (n) has f (G) > n. Let g(n) be the smallest integer such that
every tournament Gwithmore than g(n) vertices has f (G) > n. It is
straightforward thatΩ(n) ≤ g(n) ≤ f (n) ≤ n2. This paper provides
the first nontrivial lower and upper bounds for g(n). In particular, it
is proved that 1

4n
8/7

≤ g(n) ≤ n2
− (2−

1
√
2
)n+ 2. It is also shown

that f (2) = 3, i.e. every orientation of a 4-chromatic graph has a
3-chromatic acyclic subgraph. Finally, it is shown that a random
tournament G with n vertices has f (G) = Θ( n

log n ) whp.
© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

All graphs in this paper are finite and simple. An orientation of an undirected graph is obtained by
assigning a direction to each edge. An important class of oriented graphs are tournaments which are
orientations of a complete graph.We denote by Tn the unique acyclic (thereby transitive) tournament
with n vertices. An acyclic subgraph of an oriented graph is a subgraph having no directed cycles.
In this paper, the chromatic number of an oriented graph is the chromatic number of its underlying
undirected graph.

It is a folklore argument that every oriented graph has acyclic subgraphs containing at least half of
the edges. Indeed, every linear ordering of the vertices partitions the edge set to two acyclic subgraphs,
one consisting of the edges pointing from lower vertices to higher vertices and the other consisting of
the edges pointing fromhigher vertices to lower vertices. At least one of these two subgraphs contains
at least half of the edges. Thus, we are guaranteed to find dense (with respect to the density of the
original oriented graph) acyclic subgraphs. However, apart fromdensity, we do not havemuch control
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on other complexity parameters of these acyclic subgraphs. Perhaps the most natural is the following
question raised by Addario-Berry et al. [1] and also in the survey of Havet [9]. Suppose we know that
the chromatic number of our oriented graph is large, can we guarantee that an acyclic subgraph of it
also has high chromatic number?

Definition 1.1. For an oriented graph G, let f (G) denote themaximum chromatic number of an acyclic
subgraphofG. Let f (n) be the smallest integer such that every oriented graphGwith chromatic number
larger than f (n) has f (G) > n.

It was observed in [1] that f (n) ≤ n2 by the following standard ‘‘product-coloring’’ argument.
Suppose G is a graph, and take any partition of its edge set into k parts, inducing subgraphs G1, . . . ,Gk.
Then clearly,

∏k
i=1χ (Gi) ≥ χ (G) aswemayproperly color each vertex ofG by the k-dimensional vector

whose i’th entry is the color that vertex received in a coloring of Gi with χ (Gi) colors. In particular, for
the casewhere G is an oriented graphwith χ (G) ≥ n2

+1 and G1 and G2 are acyclic subgraphs forming
a partition of the edge set according to some linear ordering of the vertices as described in the previous
paragraph, then χ (G1) · χ (G2) ≥ n2

+ 1 so at least one of them has chromatic number at least n + 1.
This shows that f (n) ≤ n2. To date, there is no known improvement over this simple upper bound.

What if we restrict the question to tournaments? A tournament with g(n) vertices has chromatic
number g(n) as it is an orientation of Kg(n). Thus, we have the following definition.

Definition 1.2. Let g(n) be the smallest integer such that every tournament G with more than g(n)
vertices has f (G) > n.

Clearly, we have g(n) ≤ f (n) and hence the aforementioned simple upper bound g(n) ≤ n2 holds
here as well. Our first result is a modest, yet nontrivial improvement to the upper bound.

Theorem 1.3. g(n) ≤ n2
− (2 −

1
√
2
)n + 2.

We suspect that this upper bound can be improved and raise the following conjecture.

Conjecture 1.4. g(n) = o(n2).

As for f (n), while we cannot improve upon the upper bound f (n) ≤ n2 in general, we do settle the
first nontrivial case.

Theorem 1.5. Suppose G is an orientation of a 4-chromatic graph. Then G has an acyclic subgraph with
chromatic number at least 3. In particular, f (2) = 3.

Notice that g(2) = 3 is trivial since every tournament with more than 3 vertices has an acyclic
triangle and since each acyclic subgraph of the directed triangle has chromatic number at most 2.
Whether f (n) = g(n) for larger n remains open.

Let h(n) be the least integer such that every oriented graph with chromatic number h(n) contains
every oriented tree with n vertices. A longstanding conjecture of Burr [4] asserts that h(n) = 2n − 2.
Presently the best known upper bound is h(n) ≤ n2/2 − n/2 + 1 given in [1]. One motivation for
studying f (n), given in [1], stems from the fact proved there that every acyclic oriented graph with
chromatic number n contains every oriented tree on n vertices. Hence, any upper bound for f (n) can
be used as an upper bound for h(n) and any lower bound for f (n) which is significantly larger than
linear shows that obtaining improvements for h(n) are limited with this approach. Our next result
provides such a lower bound for g(n) and hence a lower bound for f (n).

Theorem 1.6. There are tournaments G with more than n8/7/4 vertices such that f (G) ≤ n. Consequently,
g(n) ≥ n8/7/4.

In spite of the fact proved in Theorem 1.6 that there are tournaments that have the property that
every acyclic subgraph has chromatic number polynomially smaller than the number of vertices of the
tournament, it turns out that almost all tournaments do have acyclic subgraphs with only a logarith-
mic fraction loss in the chromatic number. Recall that the random tournament G(n) is the probability
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