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a b s t r a c t

We study the dispersion of a point set, a notion closely related to
the discrepancy. Given a real r ∈ (0, 1) and an integer d ≥ 2,
let N(r, d) denote the minimum number of points inside the d-
dimensional unit cube [0, 1]d such that they intersect every axis-
aligned box inside [0, 1]d of volume greater than r . We prove an
upper bound on N(r, d), matching a lower bound of Aistleitner et
al. up to a multiplicative constant depending only on r . This fully
determines the rate of growth of N(r, d) if r ∈ (0, 1) is fixed.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The geometric discrepancy theory is the study of distributions of finite point sets and their
irregularities [5]. In this note, we study a notion closely related to discrepancy, the dispersion of a
point set.

The problem of finding the area of the largest empty axis-parallel rectangle amidst a set of points
in the unit square is a classical problem in computational geometry. The algorithmic version has been
introduced by Naamad et al. [6] and several other algorithms have been proposed over the years, such
as [2]. The problem naturally generalizes tomulti-dimensional variant, where the task is to determine
the volume of the largest empty box amidst a set of points in the d-dimensional unit cube.

An active line of research concerns general bounds on the volume of largest empty box for any
set of points, in terms of the dimension and the number of points. An upper bound thus amounts to
exhibiting an example of a point set such that the volume of any empty box is small, while the lower
bound asks for the minimal value such that every set of points of given cardinality allows an empty
box of that volume. The first results in this directionwere given by Rote and Tichy [9]. Dumitrescu and
Jiang [4] first showed a non-trivial lower bound, which was later improved by Aistleitner et al. [1]. An
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upper bound by Larcher is also given in [1]. Rudolf [10] has found an upper bound with much better
dependence on the dimension. The problem has recently received attention due to similar questions
appearing in approximation theory [8], discrepancy theory [3,7] and approximation of Lp-norms and
Marcinkiewicz-type discretization [12,11,13].

The following reformulation is of interest in the applications in approximation theory: If we fix
r ∈ (0, 1) to be the ‘‘allowed volume’’, howmany points in Rd are needed to force that any empty box
has volume atmost r , in terms of d? In otherwords, we ask for theminimumnumber of points needed
to intersect every box of volume greater than r . In this note, we establish the optimal asymptotic
growth of this quantity for r fixed.

1.1. Notation

For a positive integer k, let [k] denote the set {1, 2, . . . , k}. If x ∈ Rd is a vector, (x)i denotes the ith
coordinate of x. Let 1 denote the vector (1, . . . , 1) ∈ Rd (where d will always be clear from context).

For d ≥ 2, we use [0, 1]d to denote the d-dimensional unit cube. A box B = I1 × · · · × Id ⊆ [0, 1]d
is open (closed) if all of I1, . . . , Id are open (closed) intervals. We define Bd as the family of all open
boxes inside [0, 1]d.

For a set T of n points in [0, 1]d, the volume of the largest open axis-parallel box avoiding all points
from T is called the dispersion of T and is defined as

disp(T ) = sup
B∈Bd, B∩T=∅

vol(B), (1)

where vol(I1 × · · · × Id) = |I1| · · · |Id|. Note that the supremum in (1) is attained, since there are only
finitely many inclusion-maximal boxes B ∈ Bd avoiding T .

We further define the minimal dispersion for any point set as

disp∗(n, d) = inf
T⊂[0,1]d, |T |=n

disp(T ). (2)

Again, observe that the infimum in (2) is actually attained, since any sequence of n-element point sets
inside [0, 1]d has a convergent subsequence.

The quantity we mainly consider in this paper is the inverse function of the minimal dispersion,

N(r, d) = min{n ∈ N : disp∗(n, d) ≤ r},

where r ∈ (0, 1). Determining N(r, d) thus corresponds to the question of how many points are
needed to intersect every box of volume greater than r .

We remark that the functions disp∗(n, d) and N(r, d) are of course tightly connected and any
bounds on them translate between each other.

1.2. Previous work

The trivial lower bound on disp∗(n, d) is 1/(n+ 1), since we can split the cube into n+ 1 parts and
use the pigeonhole principle. This was improved in [1] to

disp∗(n, d) ≥
log2d

4(n + log2d)
. (3)

The inequality (3) can be reformulated to give a lower bound on N(r, d) for r ∈ (0, 1/4),

N(r, d) ≥
1 − 4r
4r

log2d. (4)

In order to show (3), the same authors prove an auxiliary lemma, which is equivalent to that

N(1/4, d) ≥ log2(d + 1).

Thus for r ∈ (0, 1/4] fixed, we have N(r, d) = Ω(log d).
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