

Contents lists available at ScienceDirect

Journal of Combinatorial Theory, Series A

www.elsevier.com/locate/jcta

An upper bound on the size of diamond-free families of sets

Dániel Grósz^a, Abhishek Methuku^b, Casey Tompkins^c

^a Department of Mathematics, University of Pisa, Italy

^b Department of Mathematics, Central European University, Budapest, Hungary

^c Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, Hungary

ARTICLE INFO

Article history: Received 24 April 2016 Available online 2 February 2018

Keywords: Extremal set theory Forbidden subposets Boolean lattice Diamond

ABSTRACT

Let $\operatorname{La}(n, P)$ be the maximum size of a family of subsets of $[n] = \{1, 2, \ldots, n\}$ not containing P as a (weak) subposet. The diamond poset, denoted \mathcal{Q}_2 , is defined on four elements x, y, z, w with the relations x < y, z and y, z < w. La(n, P) has been studied for many posets; one of the major open problems is determining $\operatorname{La}(n, \mathcal{Q}_2)$. It is conjectured that $\operatorname{La}(n, \mathcal{Q}_2) = (2 + o(1)) \binom{n}{\lfloor n/2 \rfloor}$, and infinitely many significantly different, asymptotically tight constructions are known.

Studying the average number of sets from a family of subsets of [n] on a maximal chain in the Boolean lattice $2^{[n]}$ has been a fruitful method. We use a partitioning of the maximal chains and introduce an induction method to show that $\operatorname{La}(n, \mathcal{Q}_2) \leq (2.20711 + o(1)) \binom{n}{\lfloor n/2 \rfloor}$, improving on the earlier bound of $(2.25 + o(1)) \binom{n}{\lfloor n/2 \rfloor}$ by Kramer, Martin and Young. @ 2018 Elsevier Inc. All rights reserved.

E-mail addresses: groszdanielpub@gmail.com (D. Grósz), abhishekmethuku@gmail.com (A. Methuku), ctompkins496@gmail.com (C. Tompkins).

1. Introduction

Let $[n] = \{1, 2, ..., n\}$. The Boolean lattice $2^{[n]}$ is defined as the family of all subsets of $[n] = \{1, 2, ..., n\}$, and the *i*th level of $2^{[n]}$ refers to the collection of all sets of size *i*. In 1928, Sperner proved the following well-known theorem.

Theorem 1.1 (Sperner [24]). If \mathcal{F} is a family of subsets of [n] such that no set contains another $(A, B \in \mathcal{F} \text{ implies } A \not\subset B)$, then $|\mathcal{F}| \leq {n \choose \lfloor n/2 \rfloor}$. Moreover, equality occurs if and only if \mathcal{F} is a level of maximum size in $2^{[n]}$.

Definition 1.2. Let P be a finite poset, and \mathcal{F} be a family of subsets of [n]. We say that P is contained in \mathcal{F} as a (weak) subposet if there is an injection $\varphi : P \to \mathcal{F}$ satisfying $x_1 <_p x_2 \Rightarrow \varphi(x_1) \subset \varphi(x_2)$ for every $x_1, x_2 \in P$. \mathcal{F} is called P-free if P is not contained in \mathcal{F} as a weak subposet. We define the corresponding extremal function as $\operatorname{La}(n, P) := \max\{|\mathcal{F}| : \mathcal{F} \text{ is } P\text{-free}\}.$

A k-chain, denoted by P_k , is defined to be the poset on the set $\{x_1, x_2, \ldots, x_k\}$ with the relations $x_1 \leq x_2 \leq \cdots \leq x_k$. Using the above notation, Sperner's theorem can be stated as $\operatorname{La}(n, P_2) = \binom{n}{\lfloor n/2 \rfloor}$. Let $\Sigma(n, k)$ denote the sum of the k largest binomial coefficients of order n. An important generalization of Sperner's theorem due to Erdős [10] states that $\operatorname{La}(n, P_{k+1}) = \Sigma(n, k)$. Moreover, equality occurs if and only if \mathcal{F} is the union of k of the largest levels in $2^{[n]}$.

Definition 1.3 (Posets Q_2, V and Λ). The diamond poset, denoted Q_2 (or D_2 or \mathcal{B}_2), is a poset on four elements $\{x, y, z, w\}$, with the relations x < y, z and y, z < w. That is, Q_2 is a subposet of a family of sets \mathcal{A} if there are different sets $A, B, C, D \in \mathcal{A}$ with $A \subset B, C$ and $B, C \subset D$. (Note that B and C are not necessarily unrelated.) The Vposet is a poset on $\{x, y, z\}$ with the relations $x \leq y, z$; the Λ poset is defined on $\{x, y, z\}$ with the relations $x, y \leq z$. That is, the Λ is a subposet of a family of sets \mathcal{A} if there are different sets $B, C, D \in \mathcal{A}$ with $B, C \subset D$.

The general study of forbidden poset problems was initiated in the paper of Katona and Tarján [16] in 1983. They determined the size of the largest family of sets containing neither a V nor a Λ . They also gave an estimate on the maximum size of V-free families: $\left(1 + \frac{1}{n} + o\left(\frac{1}{n}\right)\right) {n \choose \lfloor n/2 \rfloor} \leq \operatorname{La}(n, V) \leq \left(1 + \frac{2}{n}\right) {n \choose \lfloor n/2 \rfloor}$. This result was later generalized by De Bonis and Katona [8] who obtained bounds for the *r*-fork poset, V_r defined by the relations $x \leq y_1, y_2, \ldots, y_r$. Other posets for which $\operatorname{La}(n, P)$ has been studied include complete two level posets, batons [25], crowns O_{2k} (cycle of length 2k on two levels, asymptotically solved except for $k \in \{3, 5\}$ [13,18]), butterfly [9], skew-butterfly [22], the N poset [11], harp posets $\mathcal{H}(l_1, l_2, \ldots, l_k)$, defined by k chains of length l_i between two fixed elements [14], and recently the complete 3 level poset $K_{r,s,t}$ [23] among others. (See [12] for a nice survey by Griggs and Li.) Download English Version:

https://daneshyari.com/en/article/8903779

Download Persian Version:

https://daneshyari.com/article/8903779

Daneshyari.com