An upper bound on the size of diamond-free families of sets

Dániel Grósz ${ }^{\text {a }}$, Abhishek Methuku ${ }^{\text {b }}$, Casey Tompkins ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Mathematics, University of Pisa, Italy
${ }^{\text {b }}$ Department of Mathematics, Central European University, Budapest, Hungary
c Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, Hungary

A R T I C L E I N F O

Article history:

Received 24 April 2016
Available online 2 February 2018

Keywords:

Extremal set theory
Forbidden subposets
Boolean lattice
Diamond

A B S T R A C T

Let $\mathrm{La}(n, P)$ be the maximum size of a family of subsets of $[n]=\{1,2, \ldots, n\}$ not containing P as a (weak) subposet. The diamond poset, denoted \mathcal{Q}_{2}, is defined on four elements x, y, z, w with the relations $x<y, z$ and $y, z<w . \mathrm{La}(n, P)$ has been studied for many posets; one of the major open problems is determining $\mathrm{La}\left(n, \mathcal{Q}_{2}\right)$. It is conjectured that $\mathrm{La}\left(n, \mathcal{Q}_{2}\right)=$ $(2+o(1))\binom{n}{\lfloor n / 2\rfloor}$, and infinitely many significantly different, asymptotically tight constructions are known.
Studying the average number of sets from a family of subsets of $[n]$ on a maximal chain in the Boolean lattice $2^{[n]}$ has been a fruitful method. We use a partitioning of the maximal chains and introduce an induction method to show that $\mathrm{La}\left(n, \mathcal{Q}_{2}\right) \leq(2.20711+o(1))\binom{n}{\lfloor n / 2\rfloor}$, improving on the earlier bound of $(2.25+o(1))\binom{n}{\lfloor n / 2\rfloor}$ by Kramer, Martin and Young. © 2018 Elsevier Inc. All rights reserved.

[^0]
1. Introduction

Let $[n]=\{1,2, \ldots, n\}$. The Boolean lattice $2^{[n]}$ is defined as the family of all subsets of $[n]=\{1,2, \ldots, n\}$, and the i th level of $2^{[n]}$ refers to the collection of all sets of size i. In 1928, Sperner proved the following well-known theorem.

Theorem 1.1 (Sperner [24]). If \mathcal{F} is a family of subsets of $[n]$ such that no set contains another $(A, B \in \mathcal{F}$ implies $A \not \subset B)$, then $|\mathcal{F}| \leq\binom{ n}{\lfloor n / 2\rfloor}$. Moreover, equality occurs if and only if \mathcal{F} is a level of maximum size in $2^{[n]}$.

Definition 1.2. Let P be a finite poset, and \mathcal{F} be a family of subsets of $[n]$. We say that P is contained in \mathcal{F} as a (weak) subposet if there is an injection $\varphi: P \rightarrow \mathcal{F}$ satisfying $x_{1}<_{p} x_{2} \Rightarrow \varphi\left(x_{1}\right) \subset \varphi\left(x_{2}\right)$ for every $x_{1}, x_{2} \in P . \mathcal{F}$ is called P-free if P is not contained in \mathcal{F} as a weak subposet. We define the corresponding extremal function as $\mathrm{La}(n, P):=\max \{|\mathcal{F}|: \mathcal{F}$ is P-free $\}$.

A k-chain, denoted by P_{k}, is defined to be the poset on the set $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ with the relations $x_{1} \leq x_{2} \leq \cdots \leq x_{k}$. Using the above notation, Sperner's theorem can be stated as $\mathrm{La}\left(n, P_{2}\right)=\binom{n}{\lfloor n / 2\rfloor}$. Let $\Sigma(n, k)$ denote the sum of the k largest binomial coefficients of order n. An important generalization of Sperner's theorem due to Erdős [10] states that $\mathrm{La}\left(n, P_{k+1}\right)=\Sigma(n, k)$. Moreover, equality occurs if and only if \mathcal{F} is the union of k of the largest levels in $2^{[n]}$.

Definition 1.3 (Posets \mathcal{Q}_{2}, V and Λ). The diamond poset, denoted \mathcal{Q}_{2} (or \mathcal{D}_{2} or \mathcal{B}_{2}), is a poset on four elements $\{x, y, z, w\}$, with the relations $x<y, z$ and $y, z<w$. That is, \mathcal{Q}_{2} is a subposet of a family of sets \mathcal{A} if there are different sets $A, B, C, D \in \mathcal{A}$ with $A \subset B, C$ and $B, C \subset D$. (Note that B and C are not necessarily unrelated.) The V poset is a poset on $\{x, y, z\}$ with the relations $x \leq y, z$; the Λ poset is defined on $\{x, y, z\}$ with the relations $x, y \leq z$. That is, the Λ is a subposet of a family of sets \mathcal{A} if there are different sets $B, C, D \in \mathcal{A}$ with $B, C \subset D$.

The general study of forbidden poset problems was initiated in the paper of Katona and Tarján [16] in 1983. They determined the size of the largest family of sets containing neither a V nor a Λ. They also gave an estimate on the maximum size of V-free families: $\left(1+\frac{1}{n}+o\left(\frac{1}{n}\right)\right)\binom{n}{\lfloor n / 2\rfloor} \leq \mathrm{La}(n, V) \leq\left(1+\frac{2}{n}\right)\binom{n}{\lfloor n / 2\rfloor}$. This result was later generalized by De Bonis and Katona [8] who obtained bounds for the r-fork poset, V_{r} defined by the relations $x \leq y_{1}, y_{2}, \ldots, y_{r}$. Other posets for which $\mathrm{La}(n, P)$ has been studied include complete two level posets, batons [25], crowns $O_{2 k}$ (cycle of length $2 k$ on two levels, asymptotically solved except for $k \in\{3,5\}$ [13,18]), butterfly [9], skew-butterfly [22], the N poset [11], harp posets $\mathcal{H}\left(l_{1}, l_{2}, \ldots, l_{k}\right)$, defined by k chains of length l_{i} between two fixed elements [14], and recently the complete 3 level poset $K_{r, s, t}$ [23] among others. (See [12] for a nice survey by Griggs and Li.)

https://daneshyari.com/en/article/8903779

Download Persian Version:

https://daneshyari.com/article/8903779

Daneshyari.com

[^0]: E-mail addresses: groszdanielpub@gmail.com (D. Grósz), abhishekmethuku@gmail.com (A. Methuku), ctompkins496@gmail.com (C. Tompkins).

