Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Boolean loops with compact left inner mapping groups are profinite

Vipul Kakkar

Department of Mathematics, Central University of Rajasthan, NH-8, Bandar Sindri, Ajmer, India

ARTICLE INFO

Article history: Received 7 April 2018 Received in revised form 10 April 2018 Accepted 1 June 2018 Available online 14 June 2018

MSC: 20N05 22E67

Keywords: Profinite Loop Boolean Loop Congruence

1. Introduction

A groupoid L with identity $1 \in L$ is called a *loop* if the equations Xx = y and xX = y, where X is unknown in the equation, has the unique solution in L for all $x, y \in L$. In notation we write it as X = y/xand $X = x \setminus y$ respectively. In the following, we adopt the notations from [1].

Let L be a loop. For each $a \in L$ the right translation $\rho_a : L \to L$ and the left translation $\lambda_a : L \to L$ defined by $\rho_a(x) = xa$ and $\lambda_a(x) = ax$ are bijective maps on L. Then the group $M_l(L)$ generated by λ_a is called as the *left multiplication group* of L. A mapping $\alpha \in M_l(L)$ such that $\alpha(1) = 1$ is called an *left inner* mapping. The set of all left inner mappings forms a subgroup of $M_l(L)$, which is called the *left inner mapping* group of L and is denoted by D(L). One can check that $D(L) = \langle \{\delta_{a,b} \mid a, b \in L\} \rangle$, where $\delta_{a,b} = \lambda_{ab}^{-1} \lambda_a \lambda_b$. This defines a map $\delta : L \times L \to D(L)$ given by $(a, b) \mapsto \delta_{a,b}$. Also, the set $\lambda(L) = \{\lambda_a \mid a \in L\}$ is a left transversal of D(L) in $M_l(L)$. If we identify L with $\lambda(L)$, then we say L is a left transversal of D(L) in $M_l(L)$.

ABSTRACT

A compact, Hausdorff and totally disconnected loop is called a *boolean loop*. In this note, we prove that a boolean loop with compact left inner mapping group is profinite.

@ 2018 Elsevier B.V. All rights reserved.

E-mail address: vipulk@curaj.ac.in.

Due to the construction of L.V. Sabinin (see [2], [3]), the group $M_l(L)$ can be identified with the group $L \times D(L)$ with respect to the binary operation is defined as $(a, \alpha)(b, \beta) = (a\alpha(b), \delta_{a,\alpha(b)}\chi(b, \alpha)\alpha\beta)$, where $\chi : L \times D(L) \to D(L)$ is given by $\chi(a, \alpha) = \lambda_{\alpha(a)}^{-1} \alpha \lambda_a \alpha^{-1}$ (see [1, 2.14, p. 40]).

Conversely, if L is a left transversal of a subgroup Ω in a group G. Then L is a left loop with respect to the binary operation \circ defined as follows. Let $a, b \in L$, then there exist unique $a \circ b \in L$ and $d_{a,b} \in \Omega$ such that $ab = (a \circ b)d_{a,b}$. If a left transversal L of a subgroup Ω in a group G is loop with respect to the above operation, then L is a called *loop transversal*. If θ is the permutation representation of the group G on L and $\langle L \rangle = G$, then $\theta(G) = M_l(L)$ and $\theta(\Omega) = D(L)$ (see [1, Theorem 2.8, p. 32]).

A non-empty subset T of a loop L is called a *subloop* of L, if it is loop with respect to induced binary operation on T. An equivalence relation R on a loop L is called a *congruence* in L, if it is a subloop of $L \times L$. Also an *invariant subloop* of a loop L is precisely the equivalence class of the identity of a congruence in L. If T is an invariant subloop of L, then the set $L/T = \{T \circ x | x \in L\}$ becomes a loop called as *quotient of* L*mod* T. Let R be the congruence associated to an invariant subloop T of L. Then we also denote L/T by L/R.

A loop L is called *topological* if L is a topological space and the binary operations \circ , / and \ are continuous. An inverse limit of an inverse system of finite loops with discrete topology is called a *profinite loop*. If G is compact, Hausdorff and totally disconnected group, then G is a profinite group. A compact, Hausdorff and totally disconnected loop is called a *boolean loop*. The profinite loops are boolean loops. It is not known whether a boolean loop is profinite or not. However, in [4] it is shown that a boolean loop with finite left inner mapping group is profinite. In this note, we prove the following.

Theorem 1.1. (Main Theorem) A boolean loop with the compact left inner mapping group is profinite.

2. Proof of the Main Theorem

Let us first mention few results which will be used to prove the main theorem.

Proposition 2.1. ([5, Proposition 2.1, p. 39]) An equivalence relation V on the loop L is a congruence on L if and only if the subset V of $L \times L$ is invariant under the diagonal action of the multiplication group G on $L \times L$.

Proposition 2.2. ([6, Theorem 79, p. 40]) Let L be a topological loop. Let H be a subloop of L. If H is open, then H is also closed. If H is closed and has finite index, then H is open. If L is compact and H is open, then H has finite index.

It is observed in the previous section that the left transversal and left loop are same in the sense discussed above. Let G be a Hausdorff topological group and L a loop transversal of a closed subgroup Ω in G. Then, two topologies are induced on L. One is the subspace topology τ_s induced on subset $L \subseteq G$ and other is the quotient topology τ_q obtained by the quotient space G/Ω . One can clearly observe that $\tau_q \subseteq \tau_s$. If in addition L is compact and Hausdorff, then $\tau_q = \tau_s$, for the compact Hausdorff topology is minimal Hausdorff topology. We now prove the following.

Proposition 2.3. Let L be a compact Hausdorff topological loop. Then, the left multiplication group is a topological group with respect to the product topology on $L \times D(L)$.

Proof. Let L be a compact Hausdorff topological loop. Then, the group Hom(L) of homeomorphisms of L is a topological loop with compact open topology. This implies that $D(L) \subseteq Hom(L)$ is a topological group. Since λ_a and λ_a^{-1} are continuous, the maps δ and χ are continuous. This shows that the binary operation on $M_l(L)$ is continuous. Also, $(a, \alpha^{-1}) = (\alpha^{-1}(a'), \alpha^{-1}\chi(\alpha^{-1}(a'), \alpha)^{-1}\delta_{a,a'})$, where $a' = \lambda_a^{-1}(1)$. Therefore,

Download English Version:

https://daneshyari.com/en/article/8903960

Download Persian Version:

https://daneshyari.com/article/8903960

Daneshyari.com